Fully passive entanglement based quantum key distribution scheme
- URL: http://arxiv.org/abs/2111.03211v1
- Date: Fri, 5 Nov 2021 01:37:11 GMT
- Title: Fully passive entanglement based quantum key distribution scheme
- Authors: Bo Liu and Matej Pivoluska and Johannes Handsteiner and Dominik Rauch
and Marcus Huber and Fabian Steinlechner and Rupert Ursin and Thomas Scheidl
- Abstract summary: We propose a fully passive entanglement based QKD scheme in which certified random bits for privacy amplification are extracted.
The idea of extracting certified random numbers from measurement-basis-mismatched photons can be extended to all practical QKD schemes.
- Score: 2.7550995784117283
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In general, generation of entangled photon pairs and also the random choice
of measurement basis can be implemented with passive optical devices in
entanglement based quantum key distribution (QKD) system. However, auxiliary
random numbers are still mandatory for conducting the privacy amplification
procedure. In this paper, we propose a fully passive entanglement based QKD
scheme in which certified random bits for privacy amplification are extracted
from detection events of measurement-basis-mismatched entangled photon pairs.
The privacy of these random bits can be certified by estimating the phase error
rate in the sifted key. The idea of extracting certified random numbers from
measurement-basis-mismatched photons, can be extended to all practical QKD
schemes.
Related papers
- Finite-key security of passive quantum key distribution [0.0]
The passive approach to quantum key distribution (QKD) consists of eliminating all optical modulators and random number generators from QKD systems.
We provide finite-key security bounds for a fully passive decoy-state BB84 protocol.
arXiv Detail & Related papers (2023-08-04T15:18:25Z) - Secret key rate bounds for quantum key distribution with non-uniform
phase randomization [0.0]
Decoy-state quantum key distribution (QKD) is undoubtedly the most efficient solution to handle multi-photon signals emitted by laser sources.
It provides the same secret key rate scaling as ideal single-photon sources.
It requires, however, that the phase of each emitted pulse is uniformly random.
arXiv Detail & Related papers (2023-04-07T09:51:13Z) - Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron
Nitride [48.97025221755422]
We demonstrate a room temperature, discrete-variable quantum key distribution system using a bright single photon source in hexagonal-boron nitride.
We have generated keys with one million bits length, and demonstrated a secret key of approximately 70,000 bits, at a quantum bit error rate of 6%.
Our work demonstrates the first proof of concept finite-key BB84 QKD system realised with hBN defects.
arXiv Detail & Related papers (2023-02-13T09:38:51Z) - Testing randomness of series generated in Bell's experiment [62.997667081978825]
We use a toy fiber optic based setup to generate binary series, and evaluate their level of randomness according to Ville principle.
Series are tested with a battery of standard statistical indicators, Hurst, Kolmogorov complexity, minimum entropy, Takensarity dimension of embedding, and Augmented Dickey Fuller and Kwiatkowski Phillips Schmidt Shin to check station exponent.
The level of randomness of series obtained by applying Toeplitz extractor to rejected series is found to be indistinguishable from the level of non-rejected raw ones.
arXiv Detail & Related papers (2022-08-31T17:39:29Z) - A fully passive transmitter for decoy-state quantum key distribution [3.4069627091757173]
A passive quantum key distribution (QKD) transmitter generates the quantum states prescribed by a QKD protocol at random.
By avoiding the use of active optical modulators externally driven by random number generators, passive QKD transmitters offer immunity to modulator side channels.
arXiv Detail & Related papers (2022-08-26T09:17:13Z) - Efficient room-temperature molecular single-photon sources for quantum
key distribution [51.56795970800138]
Quantum Key Distribution (QKD) allows the distribution of cryptographic keys between multiple users in an information-theoretic secure way.
We introduce and demonstrate a proof-of-concept QKD system exploiting a molecule-based single-photon source operating at room temperature and emitting at 785nm.
arXiv Detail & Related papers (2022-02-25T11:52:10Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Single photon randomness originating from the symmetry of dipole
emission and the unpredictability of spontaneous emission [55.41644538483948]
Quantum random number generation is a key ingredient for quantum cryptography and fundamental quantum optics.
We experimentally demonstrate quantum random number generation based on the spontaneous emission process.
The scheme can be extended to random number generation by coherent single photons with potential applications in solid-state based quantum communication at room temperature.
arXiv Detail & Related papers (2021-02-18T14:07:20Z) - The BB84 quantum key distribution using conjugate homodyne detection [0.0]
A conjugate homodyne detection system can simultaneously measure a pair of conjugate quadratures X and P of the incoming quantum state.
We show that a blind application of the standard security proof could result pessimistic QKD performance.
This study may open the door to a new family of QKD protocols, in to the well-established DV-QKD based on single photon detection and CV-QKD based on coherent detection.
arXiv Detail & Related papers (2020-08-10T14:13:55Z) - Discrete-phase-randomized measurement-device-independent quantum key
distribution [1.3706331473063877]
We show that there are loopholes for imperfect phase randomization in measurement-device-independent quantum key distribution.
We propose a discrete-phase-randomized measurement-device-independent quantum key distribution protocol as a solution to close this source-side loophole.
arXiv Detail & Related papers (2020-06-22T03:10:17Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.