論文の概要: CGCL: Collaborative Graph Contrastive Learning without Handcrafted Graph Data Augmentations
- arxiv url: http://arxiv.org/abs/2111.03262v2
- Date: Mon, 1 Apr 2024 15:14:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 00:07:06.326438
- Title: CGCL: Collaborative Graph Contrastive Learning without Handcrafted Graph Data Augmentations
- Title(参考訳): CGCL: 手作業によるグラフデータ拡張のない協調的なグラフコントラスト学習
- Authors: Tianyu Zhang, Yuxiang Ren, Wenzheng Feng, Weitao Du, Xuecang Zhang,
- Abstract要約: CGCL(Collaborative Graph Contrastive Learning framework)を提案する。
このフレームワークは、グラフを観察するために複数のグラフエンコーダを利用する。
多様なグラフエンコーダ間の協調を保証するため,非対称なアーキテクチャと補完的なエンコーダの概念を提案する。
- 参考スコア(独自算出の注目度): 12.820228374977441
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised graph representation learning is a non-trivial topic. The success of contrastive methods in the unsupervised representation learning on structured data inspires similar attempts on the graph. Existing graph contrastive learning (GCL) aims to learn the invariance across multiple augmentation views, which renders it heavily reliant on the handcrafted graph augmentations. However, inappropriate graph data augmentations can potentially jeopardize such invariance. In this paper, we show the potential hazards of inappropriate augmentations and then propose a novel Collaborative Graph Contrastive Learning framework (CGCL). This framework harnesses multiple graph encoders to observe the graph. Features observed from different encoders serve as the contrastive views in contrastive learning, which avoids inducing unstable perturbation and guarantees the invariance. To ensure the collaboration among diverse graph encoders, we propose the concepts of asymmetric architecture and complementary encoders as the design principle. To further prove the rationality, we utilize two quantitative metrics to measure the assembly of CGCL respectively. Extensive experiments demonstrate the advantages of CGCL in unsupervised graph-level representation learning and the potential of collaborative framework. The source code for reproducibility is available at https://github.com/zhangtia16/CGCL
- Abstract(参考訳): 教師なしグラフ表現学習は非自明なトピックである。
構造化データの教師なし表現学習における対照的な手法の成功は、グラフ上で同様の試みを誘発する。
既存のグラフコントラスト学習(GCL)は、複数の拡張ビューにまたがる不変性を学習することを目的としており、手作りのグラフ拡張に大きく依存している。
しかし、不適切なグラフデータの増大は、そのような不変性を阻害する可能性がある。
本稿では,不適切な拡張の危険性を示すとともに,新しい協調グラフコントラスト学習フレームワーク(CGCL)を提案する。
このフレームワークは、グラフを観察するために複数のグラフエンコーダを利用する。
異なるエンコーダから観察される特徴は対照的な学習における対照的な視点として機能し、不安定な摂動を回避し、不変性を保証する。
多様なグラフエンコーダ間の協調を保証するため,設計原理として非対称なアーキテクチャと補完的なエンコーダの概念を提案する。
この合理性を更に証明するために,2つの定量値を用いて,それぞれCGCLの組立を計測する。
大規模実験は、教師なしグラフレベルの表現学習におけるCGCLの利点と協調フレームワークの可能性を示す。
再現性のためのソースコードはhttps://github.com/zhangtia16/CGCLで公開されている。
関連論文リスト
- Community-Invariant Graph Contrastive Learning [21.72222875193335]
本研究では,グラフ強化におけるグラフコミュニティの役割について検討する。
本稿では,学習可能なグラフ拡張時のグラフコミュニティ構造を維持するための,コミュニティ不変なGCLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-02T14:59:58Z) - Graph Contrastive Learning with Cohesive Subgraph Awareness [34.76555185419192]
グラフコントラスト学習(GCL)は、多様なグラフの表現を学習するための最先端の戦略として登場した。
グラフの増大と学習過程におけるサブグラフの認識は、GCLの性能を高める可能性があると論じる。
我々はCTAugと呼ばれる新しい統合フレームワークを提案し、結合認識を様々な既存のGCLメカニズムにシームレスに統合する。
論文 参考訳(メタデータ) (2024-01-31T03:51:30Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
コントラスト学習は、監督の有無にかかわらず、表現を学習するための第一の方法として現れてきた。
近年の研究では、グラフ表現学習における事前学習の有用性が示されている。
本稿では,グラフの対照的な目的に対する拡張を構築する際に,候補のバンクを提供するためのグラフ変換操作を提案する。
論文 参考訳(メタデータ) (2023-02-06T16:26:29Z) - Signed Directed Graph Contrastive Learning with Laplacian Augmentation [1.3535770763481905]
グラフの対比学習は、いくつかのグラフマイニングタスクにおいて強力なテクニックとなっている。
本稿では,新しい署名指向グラフコントラスト学習,SDGCLを提案する。
2つの異なる構造的摂動グラフビューを作成し、磁気ラプラシア摂動を通してノード表現を得る。
論文 参考訳(メタデータ) (2023-01-12T17:32:19Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
グラフコントラスト学習(GCL)は、手作業によるアノテーションの監督なしに、グラフ表現学習(GRL)において有望な性能を示した。
本稿では,この課題に対処するため,グラフココというグラフ補完型コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-24T02:58:36Z) - Dual Space Graph Contrastive Learning [82.81372024482202]
本研究では,新しいグラフコントラスト学習手法,すなわち textbfDual textbfSpace textbfGraph textbfContrastive (DSGC) Learningを提案する。
両空間にはグラフデータを埋め込み空間に表現する独自の利点があるので、グラフコントラスト学習を用いて空間をブリッジし、双方の利点を活用することを期待する。
論文 参考訳(メタデータ) (2022-01-19T04:10:29Z) - Bringing Your Own View: Graph Contrastive Learning without Prefabricated
Data Augmentations [94.41860307845812]
Self-supervisionは最近、グラフ学習の新しいフロンティアに力を入れている。
GraphCLは、グラフデータ拡張のアドホックな手作業による選択によって反映されたプレハブ付きプリファブリックを使用する。
グラフ生成器のパラメータ空間における学習可能な連続前処理へと拡張した。
我々は、情報最小化(InfoMin)と情報ボトルネック(InfoBN)の2つの原則を利用して、学習した事前情報を規則化する。
論文 参考訳(メタデータ) (2022-01-04T15:49:18Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
グラフデータの教師なし表現を学習するためのグラフコントラスト学習(GraphCL)フレームワークを提案する。
我々のフレームワークは、最先端の手法と比較して、類似またはより良い一般化可能性、転送可能性、堅牢性のグラフ表現を作成できることを示す。
論文 参考訳(メタデータ) (2020-10-22T20:13:43Z) - Unsupervised Graph Embedding via Adaptive Graph Learning [85.28555417981063]
グラフオートエンコーダ(GAE)は、グラフ埋め込みのための表現学習において強力なツールである。
本稿では,2つの新しい教師なしグラフ埋め込み法,適応グラフ学習(BAGE)による教師なしグラフ埋め込み,変分適応グラフ学習(VBAGE)による教師なしグラフ埋め込みを提案する。
いくつかのデータセットに関する実験的研究により、我々の手法がノードクラスタリング、ノード分類、グラフ可視化タスクにおいて、ベースラインよりも優れていることが実証された。
論文 参考訳(メタデータ) (2020-03-10T02:33:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。