CGCL: Collaborative Graph Contrastive Learning without Handcrafted Graph Data Augmentations
- URL: http://arxiv.org/abs/2111.03262v2
- Date: Mon, 1 Apr 2024 15:14:06 GMT
- Title: CGCL: Collaborative Graph Contrastive Learning without Handcrafted Graph Data Augmentations
- Authors: Tianyu Zhang, Yuxiang Ren, Wenzheng Feng, Weitao Du, Xuecang Zhang,
- Abstract summary: We propose a novel Collaborative Graph Contrastive Learning framework (CGCL)
This framework harnesses multiple graph encoders to observe the graph.
To ensure the collaboration among diverse graph encoders, we propose the concepts of asymmetric architecture and complementary encoders.
- Score: 12.820228374977441
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised graph representation learning is a non-trivial topic. The success of contrastive methods in the unsupervised representation learning on structured data inspires similar attempts on the graph. Existing graph contrastive learning (GCL) aims to learn the invariance across multiple augmentation views, which renders it heavily reliant on the handcrafted graph augmentations. However, inappropriate graph data augmentations can potentially jeopardize such invariance. In this paper, we show the potential hazards of inappropriate augmentations and then propose a novel Collaborative Graph Contrastive Learning framework (CGCL). This framework harnesses multiple graph encoders to observe the graph. Features observed from different encoders serve as the contrastive views in contrastive learning, which avoids inducing unstable perturbation and guarantees the invariance. To ensure the collaboration among diverse graph encoders, we propose the concepts of asymmetric architecture and complementary encoders as the design principle. To further prove the rationality, we utilize two quantitative metrics to measure the assembly of CGCL respectively. Extensive experiments demonstrate the advantages of CGCL in unsupervised graph-level representation learning and the potential of collaborative framework. The source code for reproducibility is available at https://github.com/zhangtia16/CGCL
Related papers
- Community-Invariant Graph Contrastive Learning [21.72222875193335]
This research investigates the role of the graph community in graph augmentation.
We propose a community-invariant GCL framework to maintain graph community structure during learnable graph augmentation.
arXiv Detail & Related papers (2024-05-02T14:59:58Z) - Graph Contrastive Learning with Cohesive Subgraph Awareness [34.76555185419192]
Graph contrastive learning (GCL) has emerged as a state-of-the-art strategy for learning representations of diverse graphs.
We argue that an awareness of subgraphs during the graph augmentation and learning processes has the potential to enhance GCL performance.
We propose a novel unified framework called CTAug, to seamlessly integrate cohesion awareness into various existing GCL mechanisms.
arXiv Detail & Related papers (2024-01-31T03:51:30Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - Signed Directed Graph Contrastive Learning with Laplacian Augmentation [1.3535770763481905]
Graph contrastive learning has become a powerful technique for several graph mining tasks.
This paper proposes a novel signed-directed graph contrastive learning, SDGCL.
It makes two different structurally perturbed graph views and gets node representations via magnetic Laplacian perturbation.
arXiv Detail & Related papers (2023-01-12T17:32:19Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
Graph Contrastive Learning (GCL) has shown promising performance in graph representation learning (GRL) without the supervision of manual annotations.
This paper proposes an effective graph complementary contrastive learning approach named GraphCoCo to tackle the above issue.
arXiv Detail & Related papers (2022-03-24T02:58:36Z) - Dual Space Graph Contrastive Learning [82.81372024482202]
We propose a novel graph contrastive learning method, namely textbfDual textbfSpace textbfGraph textbfContrastive (DSGC) Learning.
Since both spaces have their own advantages to represent graph data in the embedding spaces, we hope to utilize graph contrastive learning to bridge the spaces and leverage advantages from both sides.
arXiv Detail & Related papers (2022-01-19T04:10:29Z) - Bringing Your Own View: Graph Contrastive Learning without Prefabricated
Data Augmentations [94.41860307845812]
Self-supervision is recently surging at its new frontier of graph learning.
GraphCL uses a prefabricated prior reflected by the ad-hoc manual selection of graph data augmentations.
We have extended the prefabricated discrete prior in the augmentation set, to a learnable continuous prior in the parameter space of graph generators.
We have leveraged both principles of information minimization (InfoMin) and information bottleneck (InfoBN) to regularize the learned priors.
arXiv Detail & Related papers (2022-01-04T15:49:18Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
We propose a graph contrastive learning (GraphCL) framework for learning unsupervised representations of graph data.
We show that our framework can produce graph representations of similar or better generalizability, transferrability, and robustness compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-10-22T20:13:43Z) - Unsupervised Graph Embedding via Adaptive Graph Learning [85.28555417981063]
Graph autoencoders (GAEs) are powerful tools in representation learning for graph embedding.
In this paper, two novel unsupervised graph embedding methods, unsupervised graph embedding via adaptive graph learning (BAGE) and unsupervised graph embedding via variational adaptive graph learning (VBAGE) are proposed.
Experimental studies on several datasets validate our design and demonstrate that our methods outperform baselines by a wide margin in node clustering, node classification, and graph visualization tasks.
arXiv Detail & Related papers (2020-03-10T02:33:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.