SSA: Semantic Structure Aware Inference for Weakly Pixel-Wise Dense
Predictions without Cost
- URL: http://arxiv.org/abs/2111.03392v1
- Date: Fri, 5 Nov 2021 11:07:21 GMT
- Title: SSA: Semantic Structure Aware Inference for Weakly Pixel-Wise Dense
Predictions without Cost
- Authors: Yanpeng Sun and Zechao Li
- Abstract summary: The semantic structure aware inference (SSA) is proposed to explore the semantic structure information hidden in different stages of the CNN-based network to generate high-quality CAM in the model inference.
The proposed method has the advantage of no parameters and does not need to be trained. Therefore, it can be applied to a wide range of weakly-supervised pixel-wise dense prediction tasks.
- Score: 36.27226683586425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The pixel-wise dense prediction tasks based on weakly supervisions currently
use Class Attention Maps (CAM) to generate pseudo masks as ground-truth.
However, the existing methods typically depend on the painstaking training
modules, which may bring in grinding computational overhead and complex
training procedures. In this work, the semantic structure aware inference (SSA)
is proposed to explore the semantic structure information hidden in different
stages of the CNN-based network to generate high-quality CAM in the model
inference. Specifically, the semantic structure modeling module (SSM) is first
proposed to generate the class-agnostic semantic correlation representation,
where each item denotes the affinity degree between one category of objects and
all the others. Then the structured feature representation is explored to
polish an immature CAM via the dot product operation. Finally, the polished
CAMs from different backbone stages are fused as the output. The proposed
method has the advantage of no parameters and does not need to be trained.
Therefore, it can be applied to a wide range of weakly-supervised pixel-wise
dense prediction tasks. Experimental results on both weakly-supervised object
localization and weakly-supervised semantic segmentation tasks demonstrate the
effectiveness of the proposed method, which achieves the new state-of-the-art
results on these two tasks.
Related papers
- Skeleton2vec: A Self-supervised Learning Framework with Contextualized
Target Representations for Skeleton Sequence [56.092059713922744]
We show that using high-level contextualized features as prediction targets can achieve superior performance.
Specifically, we propose Skeleton2vec, a simple and efficient self-supervised 3D action representation learning framework.
Our proposed Skeleton2vec outperforms previous methods and achieves state-of-the-art results.
arXiv Detail & Related papers (2024-01-01T12:08:35Z) - Masked Momentum Contrastive Learning for Zero-shot Semantic
Understanding [39.424931953675994]
Self-supervised pretraining (SSP) has emerged as a popular technique in machine learning, enabling the extraction of meaningful feature representations without labelled data.
This study endeavours to evaluate the effectiveness of pure self-supervised learning (SSL) techniques in computer vision tasks.
arXiv Detail & Related papers (2023-08-22T13:55:57Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Decom--CAM: Tell Me What You See, In Details! Feature-Level Interpretation via Decomposition Class Activation Map [23.71680014689873]
Class Activation Map (CAM) is widely used to interpret deep model predictions by highlighting object location.
This paper proposes a new two-stage interpretability method called the Decomposition Class Activation Map (Decom-CAM)
Our experiments demonstrate that the proposed Decom-CAM outperforms current state-of-the-art methods significantly.
arXiv Detail & Related papers (2023-05-27T14:33:01Z) - USER: Unified Semantic Enhancement with Momentum Contrast for Image-Text
Retrieval [115.28586222748478]
Image-Text Retrieval (ITR) aims at searching for the target instances that are semantically relevant to the given query from the other modality.
Existing approaches typically suffer from two major limitations.
arXiv Detail & Related papers (2023-01-17T12:42:58Z) - Guiding the PLMs with Semantic Anchors as Intermediate Supervision:
Towards Interpretable Semantic Parsing [57.11806632758607]
We propose to incorporate the current pretrained language models with a hierarchical decoder network.
By taking the first-principle structures as the semantic anchors, we propose two novel intermediate supervision tasks.
We conduct intensive experiments on several semantic parsing benchmarks and demonstrate that our approach can consistently outperform the baselines.
arXiv Detail & Related papers (2022-10-04T07:27:29Z) - Exploiting Shape Cues for Weakly Supervised Semantic Segmentation [15.791415215216029]
Weakly supervised semantic segmentation (WSSS) aims to produce pixel-wise class predictions with only image-level labels for training.
We propose to exploit shape information to supplement the texture-biased property of convolutional neural networks (CNNs)
We further refine the predictions in an online fashion with a novel refinement method that takes into account both the class and the color affinities.
arXiv Detail & Related papers (2022-08-08T17:25:31Z) - Learning structure-aware semantic segmentation with image-level
supervision [36.40302533324508]
We argue that the lost structure information in CAM limits its application in downstream semantic segmentation.
We introduce an auxiliary semantic boundary detection module, which penalizes the deteriorated predictions.
Experimental results on the PASCAL-VOC dataset illustrate the effectiveness of the proposed solution.
arXiv Detail & Related papers (2021-04-15T03:33:20Z) - SOSD-Net: Joint Semantic Object Segmentation and Depth Estimation from
Monocular images [94.36401543589523]
We introduce the concept of semantic objectness to exploit the geometric relationship of these two tasks.
We then propose a Semantic Object and Depth Estimation Network (SOSD-Net) based on the objectness assumption.
To the best of our knowledge, SOSD-Net is the first network that exploits the geometry constraint for simultaneous monocular depth estimation and semantic segmentation.
arXiv Detail & Related papers (2021-01-19T02:41:03Z) - Eigen-CAM: Class Activation Map using Principal Components [1.2691047660244335]
This paper builds on previous ideas to cope with the increasing demand for interpretable, robust, and transparent models.
The proposed Eigen-CAM computes and visualizes the principle components of the learned features/representations from the convolutional layers.
arXiv Detail & Related papers (2020-08-01T17:14:13Z) - Closed-Form Factorization of Latent Semantics in GANs [65.42778970898534]
A rich set of interpretable dimensions has been shown to emerge in the latent space of the Generative Adversarial Networks (GANs) trained for synthesizing images.
In this work, we examine the internal representation learned by GANs to reveal the underlying variation factors in an unsupervised manner.
We propose a closed-form factorization algorithm for latent semantic discovery by directly decomposing the pre-trained weights.
arXiv Detail & Related papers (2020-07-13T18:05:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.