Segment Concealed Objects with Incomplete Supervision
- URL: http://arxiv.org/abs/2506.08955v2
- Date: Sat, 14 Jun 2025 00:52:36 GMT
- Title: Segment Concealed Objects with Incomplete Supervision
- Authors: Chunming He, Kai Li, Yachao Zhang, Ziyun Yang, Youwei Pang, Longxiang Tang, Chengyu Fang, Yulun Zhang, Linghe Kong, Xiu Li, Sina Farsiu,
- Abstract summary: Incompletely-Supervised Concealed Object (ISCOS) involves segmenting objects that seamlessly blend into their surrounding environments.<n>This task remains highly challenging due to the limited supervision provided by the incompletely annotated training data.<n>In this paper, we introduce the first unified method for ISCOS to address these challenges.
- Score: 63.637733655439334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Incompletely-Supervised Concealed Object Segmentation (ISCOS) involves segmenting objects that seamlessly blend into their surrounding environments, utilizing incompletely annotated data, such as weak and semi-annotations, for model training. This task remains highly challenging due to (1) the limited supervision provided by the incompletely annotated training data, and (2) the difficulty of distinguishing concealed objects from the background, which arises from the intrinsic similarities in concealed scenarios. In this paper, we introduce the first unified method for ISCOS to address these challenges. To tackle the issue of incomplete supervision, we propose a unified mean-teacher framework, SEE, that leverages the vision foundation model, ``\emph{Segment Anything Model (SAM)}'', to generate pseudo-labels using coarse masks produced by the teacher model as prompts. To mitigate the effect of low-quality segmentation masks, we introduce a series of strategies for pseudo-label generation, storage, and supervision. These strategies aim to produce informative pseudo-labels, store the best pseudo-labels generated, and select the most reliable components to guide the student model, thereby ensuring robust network training. Additionally, to tackle the issue of intrinsic similarity, we design a hybrid-granularity feature grouping module that groups features at different granularities and aggregates these results. By clustering similar features, this module promotes segmentation coherence, facilitating more complete segmentation for both single-object and multiple-object images. We validate the effectiveness of our approach across multiple ISCOS tasks, and experimental results demonstrate that our method achieves state-of-the-art performance. Furthermore, SEE can serve as a plug-and-play solution, enhancing the performance of existing models.
Related papers
- ConformalSAM: Unlocking the Potential of Foundational Segmentation Models in Semi-Supervised Semantic Segmentation with Conformal Prediction [57.930531826380836]
This work explores whether a foundational segmentation model can address label scarcity in the pixel-level vision task as an annotator for unlabeled images.<n>We propose ConformalSAM, a novel SSSS framework which first calibrates the foundation model using the target domain's labeled data and then filters out unreliable pixel labels of unlabeled data.
arXiv Detail & Related papers (2025-07-21T17:02:57Z) - S^4M: Boosting Semi-Supervised Instance Segmentation with SAM [25.94737539065708]
Semi-supervised instance segmentation poses challenges due to limited labeled data.<n>Current teacher-student frameworks still suffer from performance constraints due to unreliable pseudo-label quality.
arXiv Detail & Related papers (2025-04-07T17:59:10Z) - ZISVFM: Zero-Shot Object Instance Segmentation in Indoor Robotic Environments with Vision Foundation Models [10.858627659431928]
Service robots must effectively recognize and segment unknown objects to enhance their functionality.<n>Traditional supervised learningbased segmentation techniques require extensive annotated datasets.<n>This paper proposes a novel approach (ZISVFM) for solving UOIS by leveraging the powerful zero-shot capability of the segment anything model (SAM) and explicit visual representations from a selfsupervised vision transformer (ViT)
arXiv Detail & Related papers (2025-02-05T15:22:20Z) - Adapting Segment Anything Model for Unseen Object Instance Segmentation [70.60171342436092]
Unseen Object Instance (UOIS) is crucial for autonomous robots operating in unstructured environments.
We propose UOIS-SAM, a data-efficient solution for the UOIS task.
UOIS-SAM integrates two key components: (i) a Heatmap-based Prompt Generator (HPG) to generate class-agnostic point prompts with precise foreground prediction, and (ii) a Hierarchical Discrimination Network (HDNet) that adapts SAM's mask decoder.
arXiv Detail & Related papers (2024-09-23T19:05:50Z) - Enhancing Weakly Supervised Semantic Segmentation with Multi-modal Foundation Models: An End-to-End Approach [7.012760526318993]
Weakly-Supervised Semantic (WSSS) offers a cost-efficient workaround to extensive labeling.
Existing WSSS methods have difficulties in learning the boundaries of objects leading to poor segmentation results.
We propose a novel and effective framework that addresses these issues by leveraging visual foundation models inside the bounding box.
arXiv Detail & Related papers (2024-05-10T16:42:25Z) - PosSAM: Panoptic Open-vocabulary Segment Anything [58.72494640363136]
PosSAM is an open-vocabulary panoptic segmentation model that unifies the strengths of the Segment Anything Model (SAM) with the vision-native CLIP model in an end-to-end framework.
We introduce a Mask-Aware Selective Ensembling (MASE) algorithm that adaptively enhances the quality of generated masks and boosts the performance of open-vocabulary classification during inference for each image.
arXiv Detail & Related papers (2024-03-14T17:55:03Z) - Semantic-SAM: Segment and Recognize Anything at Any Granularity [83.64686655044765]
We introduce Semantic-SAM, a universal image segmentation model to enable segment and recognize anything at any desired granularity.
We consolidate multiple datasets across three granularities and introduce decoupled classification for objects and parts.
For the multi-granularity capability, we propose a multi-choice learning scheme during training, enabling each click to generate masks at multiple levels.
arXiv Detail & Related papers (2023-07-10T17:59:40Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
This paper presents the RefSAM model, which explores the potential of SAM for referring video object segmentation.
Our proposed approach adapts the original SAM model to enhance cross-modality learning by employing a lightweight Cross-RValModal.
We employ a parameter-efficient tuning strategy to align and fuse the language and vision features effectively.
arXiv Detail & Related papers (2023-07-03T13:21:58Z) - Weakly-Supervised Concealed Object Segmentation with SAM-based Pseudo
Labeling and Multi-scale Feature Grouping [40.07070188661184]
Weakly-Supervised Concealed Object (WSCOS) aims to segment objects well blended with surrounding environments.
It is hard to distinguish concealed objects from the background due to the intrinsic similarity.
We propose a new WSCOS method to address these two challenges.
arXiv Detail & Related papers (2023-05-18T14:31:34Z) - USER: Unified Semantic Enhancement with Momentum Contrast for Image-Text
Retrieval [115.28586222748478]
Image-Text Retrieval (ITR) aims at searching for the target instances that are semantically relevant to the given query from the other modality.
Existing approaches typically suffer from two major limitations.
arXiv Detail & Related papers (2023-01-17T12:42:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.