論文の概要: DriveGuard: Robustification of Automated Driving Systems with Deep
Spatio-Temporal Convolutional Autoencoder
- arxiv url: http://arxiv.org/abs/2111.03480v1
- Date: Fri, 5 Nov 2021 12:57:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-08 14:43:03.385790
- Title: DriveGuard: Robustification of Automated Driving Systems with Deep
Spatio-Temporal Convolutional Autoencoder
- Title(参考訳): DriveGuard:Deep Spatio-Temporal Convolutional Autoencoderによる自動走行システムのロバスト化
- Authors: Andreas Papachristodoulou, Christos Kyrkou, Theocharis Theocharides
- Abstract要約: DriveGuardは、自動運転車のための軽量時間自動エンコーダである。
DriveGuardでカメライメージを最初に処理することで、ノイズの多い入力で各知覚モデルを再学習するよりも、より普遍的なソリューションを提供する。
- 参考スコア(独自算出の注目度): 7.309316212280228
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Autonomous vehicles increasingly rely on cameras to provide the input for
perception and scene understanding and the ability of these models to classify
their environment and objects, under adverse conditions and image noise is
crucial. When the input is, either unintentionally or through targeted attacks,
deteriorated, the reliability of autonomous vehicle is compromised. In order to
mitigate such phenomena, we propose DriveGuard, a lightweight spatio-temporal
autoencoder, as a solution to robustify the image segmentation process for
autonomous vehicles. By first processing camera images with DriveGuard, we
offer a more universal solution than having to re-train each perception model
with noisy input. We explore the space of different autoencoder architectures
and evaluate them on a diverse dataset created with real and synthetic images
demonstrating that by exploiting spatio-temporal information combined with
multi-component loss we significantly increase robustness against adverse image
effects reaching within 5-6% of that of the original model on clean images.
- Abstract(参考訳): 自動運転車は、知覚とシーンの理解のためのインプットと、それらのモデルが環境や物体を、悪条件や画像ノイズの下で分類する能力を提供するために、ますますカメラに依存している。
意図せず、あるいは標的攻撃によって入力が低下した場合、自律車両の信頼性が損なわれる。
このような現象を緩和するために,自律走行車における画像分割プロセスの強化を目的とした軽量時空間オートエンコーダであるDriveGuardを提案する。
DriveGuardでカメラ画像を処理することで、ノイズの多い入力で各知覚モデルを再学習するよりも、より普遍的なソリューションを提供する。
我々は,異なるオートエンコーダアーキテクチャの空間を探索し,実画像と合成画像とを併用した多様なデータセット上で評価し,時空間情報を多成分損失と組み合わせることで,元のモデルがクリーン画像の5~6%以内の悪画像効果に対するロバスト性を著しく向上させることを示した。
関連論文リスト
- Exploring Latent Pathways: Enhancing the Interpretability of Autonomous Driving with a Variational Autoencoder [79.70947339175572]
バイオインスパイアされたニューラルサーキットポリシーモデルが革新的な制御モジュールとして登場した。
我々は、変分オートエンコーダとニューラルネットワークポリシーコントローラを統合することで、飛躍的に前進する。
本研究は,変分オートエンコーダへのアーキテクチャシフトに加えて,自動潜時摂動ツールを導入する。
論文 参考訳(メタデータ) (2024-04-02T09:05:47Z) - NiteDR: Nighttime Image De-Raining with Cross-View Sensor Cooperative Learning for Dynamic Driving Scenes [49.92839157944134]
夜間の運転シーンでは、不十分で不均一な照明が暗闇の中でシーンを遮蔽し、画質と可視性が低下する。
雨天時の運転シーンに適した画像デライニング・フレームワークを開発した。
雨の人工物を取り除き、風景表現を豊かにし、有用な情報を復元することを目的としている。
論文 参考訳(メタデータ) (2024-02-28T09:02:33Z) - RainSD: Rain Style Diversification Module for Image Synthesis
Enhancement using Feature-Level Style Distribution [5.500457283114346]
本稿では,実際の道路データセットBDD100Kから発生するセンサブロックを用いた道路合成データセットを提案する。
このデータセットを用いて、自律運転のための多様なマルチタスクネットワークの劣化を評価し、分析した。
深層ニューラルネットワークを用いた自動運転車の認識システムの性能劣化傾向を深く分析した。
論文 参考訳(メタデータ) (2023-12-31T11:30:42Z) - Dynamic Adversarial Attacks on Autonomous Driving Systems [16.657485186920102]
本稿では,自律走行システムのレジリエンスに挑戦する攻撃機構を提案する。
我々は、他の移動車に搭載された画面に対向パッチを動的に表示することにより、自動運転車の意思決定プロセスを操作する。
我々の実験は、現実の自律走行シナリオにおけるこのような動的敵攻撃の実装が最初に成功したことを実証している。
論文 参考訳(メタデータ) (2023-12-10T04:14:56Z) - ScatterNeRF: Seeing Through Fog with Physically-Based Inverse Neural
Rendering [83.75284107397003]
本稿では,シーンをレンダリングし,霧のない背景を分解するニューラルネットワークレンダリング手法であるScatterNeRFを紹介する。
本研究では,散乱量とシーンオブジェクトの非絡み合い表現を提案し,物理に着想を得た損失を伴ってシーン再構成を学習する。
マルチビューIn-the-Wildデータをキャプチャして,大規模な霧室内でのキャプチャを制御し,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2023-05-03T13:24:06Z) - Learning When to Use Adaptive Adversarial Image Perturbations against
Autonomous Vehicles [0.0]
物体検出のためのディープニューラルネットワーク(DNN)モデルは、逆画像摂動の影響を受けやすい。
敵の摂動を発生させる攻撃者の能力をモニタする多段階最適化フレームワークを提案する。
本手法では,攻撃者が状態推定に精通した時刻を監視しながら,リアルタイムに画像攻撃を発生させる能力を示す。
論文 参考訳(メタデータ) (2022-12-28T02:36:58Z) - Unified Control Framework for Real-Time Interception and Obstacle Avoidance of Fast-Moving Objects with Diffusion Variational Autoencoder [2.5642257132861923]
動的環境におけるロボットアームによる高速移動物体のリアルタイムインターセプションは、非常に困難な課題である。
本稿では,動的オブジェクトを同時にインターセプトし,移動障害を回避することで,課題に対処する統一的な制御フレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-27T18:46:52Z) - Driving-Signal Aware Full-Body Avatars [49.89791440532946]
そこで本研究では,駆動信号を意識したフルボディアバターを構築するための学習ベース手法を提案する。
我々のモデルは条件付き変分オートエンコーダであり、不完全な駆動信号でアニメーションできる。
仮想テレプレゼンスのためのフルボディアニメーションの課題に対して,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2021-05-21T16:22:38Z) - Exploring Adversarial Robustness of Multi-Sensor Perception Systems in
Self Driving [87.3492357041748]
本稿では,敵物体をホスト車両の上に配置することで,マルチセンサ検出の実用的感受性を示す。
実験の結果, 攻撃が成功した原因は主に画像の特徴が損なわれやすいことが判明した。
よりロバストなマルチモーダル知覚システムに向けて,特徴分断を伴う敵対的訓練が,このような攻撃に対するロバスト性を大幅に高めることを示す。
論文 参考訳(メタデータ) (2021-01-17T21:15:34Z) - Universal Embeddings for Spatio-Temporal Tagging of Self-Driving Logs [72.67604044776662]
我々は、生のセンサデータから、自動運転シーンの時間的タグ付けの問題に取り組む。
提案手法では,全てのタグに対する普遍的な埋め込みを学習し,多くの属性を効率的にタグ付けし,限られたデータで新しい属性を高速に学習する。
論文 参考訳(メタデータ) (2020-11-12T02:18:16Z) - Finding Physical Adversarial Examples for Autonomous Driving with Fast
and Differentiable Image Compositing [33.466413757630846]
本研究では、シミュレーションされた自律走行環境の逆修正を見つけるためのスケーラブルなアプローチを提案する。
ベイズ最適化に基づく最先端のアプローチよりも,我々のアプローチははるかにスケーラブルで,はるかに効果的です。
論文 参考訳(メタデータ) (2020-10-17T18:35:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。