Mixtures of Laplace Approximations for Improved Post-Hoc Uncertainty in
Deep Learning
- URL: http://arxiv.org/abs/2111.03577v1
- Date: Fri, 5 Nov 2021 15:52:48 GMT
- Title: Mixtures of Laplace Approximations for Improved Post-Hoc Uncertainty in
Deep Learning
- Authors: Runa Eschenhagen, Erik Daxberger, Philipp Hennig, Agustinus Kristiadi
- Abstract summary: We propose to predict with a Gaussian mixture model posterior that consists of a weighted sum of Laplace approximations of independently trained deep neural networks.
We theoretically validate that our approach mitigates overconfidence "far away" from the training data and empirically compare against state-of-the-art baselines on standard uncertainty quantification benchmarks.
- Score: 24.3370326359959
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks are prone to overconfident predictions on outliers.
Bayesian neural networks and deep ensembles have both been shown to mitigate
this problem to some extent. In this work, we aim to combine the benefits of
the two approaches by proposing to predict with a Gaussian mixture model
posterior that consists of a weighted sum of Laplace approximations of
independently trained deep neural networks. The method can be used post hoc
with any set of pre-trained networks and only requires a small computational
and memory overhead compared to regular ensembles. We theoretically validate
that our approach mitigates overconfidence "far away" from the training data
and empirically compare against state-of-the-art baselines on standard
uncertainty quantification benchmarks.
Related papers
- Unrolled denoising networks provably learn optimal Bayesian inference [54.79172096306631]
We prove the first rigorous learning guarantees for neural networks based on unrolling approximate message passing (AMP)
For compressed sensing, we prove that when trained on data drawn from a product prior, the layers of the network converge to the same denoisers used in Bayes AMP.
arXiv Detail & Related papers (2024-09-19T17:56:16Z) - Implicit Variational Inference for High-Dimensional Posteriors [7.924706533725115]
In variational inference, the benefits of Bayesian models rely on accurately capturing the true posterior distribution.
We propose using neural samplers that specify implicit distributions, which are well-suited for approximating complex multimodal and correlated posteriors.
Our approach introduces novel bounds for approximate inference using implicit distributions by locally linearising the neural sampler.
arXiv Detail & Related papers (2023-10-10T14:06:56Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
Neuro-symbolic approaches typically resort to fuzzy approximations of a probabilistic objective.
We show how to compute this efficiently for tractable circuits.
We test our approach on three tasks: predicting a minimum-cost path in Warcraft, predicting a minimum-cost perfect matching, and solving Sudoku puzzles.
arXiv Detail & Related papers (2023-02-28T00:04:22Z) - Layer Ensembles [95.42181254494287]
We introduce a method for uncertainty estimation that considers a set of independent categorical distributions for each layer of the network.
We show that the method can be further improved by ranking samples, resulting in models that require less memory and time to run.
arXiv Detail & Related papers (2022-10-10T17:52:47Z) - Greedy Bayesian Posterior Approximation with Deep Ensembles [22.466176036646814]
Ensembles of independently trained objective are a state-of-the-art approach to estimate predictive uncertainty in Deep Learning.
We show that our method is submodular with respect to the mixture of components for any problem in a function space.
arXiv Detail & Related papers (2021-05-29T11:35:27Z) - Robust and integrative Bayesian neural networks for likelihood-free
parameter inference [0.0]
State-of-the-art neural network-based methods for learning summary statistics have delivered promising results for simulation-based likelihood-free parameter inference.
This work proposes a robust integrated approach that learns summary statistics using Bayesian neural networks, and directly estimates the posterior density using categorical distributions.
arXiv Detail & Related papers (2021-02-12T13:45:23Z) - ESPN: Extremely Sparse Pruned Networks [50.436905934791035]
We show that a simple iterative mask discovery method can achieve state-of-the-art compression of very deep networks.
Our algorithm represents a hybrid approach between single shot network pruning methods and Lottery-Ticket type approaches.
arXiv Detail & Related papers (2020-06-28T23:09:27Z) - Depth Uncertainty in Neural Networks [2.6763498831034043]
Existing methods for estimating uncertainty in deep learning tend to require multiple forward passes.
By exploiting the sequential structure of feed-forward networks, we are able to both evaluate our training objective and make predictions with a single forward pass.
We validate our approach on real-world regression and image classification tasks.
arXiv Detail & Related papers (2020-06-15T14:33:40Z) - Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks [65.24701908364383]
We show that a sufficient condition for a uncertainty on a ReLU network is "to be a bit Bayesian calibrated"
We further validate these findings empirically via various standard experiments using common deep ReLU networks and Laplace approximations.
arXiv Detail & Related papers (2020-02-24T08:52:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.