論文の概要: Dynamic Human-Robot Role Allocation based on Human Ergonomics Risk
Prediction and Robot Actions Adaptation
- arxiv url: http://arxiv.org/abs/2111.03630v1
- Date: Fri, 5 Nov 2021 17:29:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-08 15:45:14.490783
- Title: Dynamic Human-Robot Role Allocation based on Human Ergonomics Risk
Prediction and Robot Actions Adaptation
- Title(参考訳): 人間のエルゴノミクスリスク予測とロボット行動適応に基づく動的人間ロボットの役割配分
- Authors: Elena Merlo (1,2), Edoardo Lamon (1), Fabio Fusaro (1,3), Marta
Lorenzini (1), Alessandro Carf\`i (2), Fulvio Mastrogiovanni (2), and Arash
Ajoudani (1). ((1) Human-Robot Interfaces and Physical Interaction, Istituto
Italiano di Tecnologia, Genoa, Italy, (2) Dept. of Informatics,
Bioengineering, Robotics, and Systems Engineering, University of Genoa,
Genoa, Italy, (3) Dept. of Electronics, Information and Bioengineering,
Politecnico di Milano, Italy)
- Abstract要約: 本研究では,人ロボット協調作業における作業者に対して,組立戦略の最適化と作業の分散を行う新しい手法を提案する。
提案手法は,作業者にとって安全かつ人間工学的な条件を確保するために,タスク割り当てプロセスの制御に成功している。
- 参考スコア(独自算出の注目度): 35.91053423341299
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite cobots have high potential in bringing several benefits in the
manufacturing and logistic processes, but their rapid (re-)deployment in
changing environments is still limited. To enable fast adaptation to new
product demands and to boost the fitness of the human workers to the allocated
tasks, we propose a novel method that optimizes assembly strategies and
distributes the effort among the workers in human-robot cooperative tasks. The
cooperation model exploits AND/OR Graphs that we adapted to solve also the role
allocation problem. The allocation algorithm considers quantitative
measurements that are computed online to describe human operator's ergonomic
status and task properties. We conducted preliminary experiments to demonstrate
that the proposed approach succeeds in controlling the task allocation process
to ensure safe and ergonomic conditions for the human worker.
- Abstract(参考訳): cobotは製造プロセスやロジスティックなプロセスにいくつかの利点をもたらす可能性があるが、変化する環境への迅速な(再)デプロイはまだ限られている。
新規の製品需要に迅速に適応し、割り当てられたタスクに対する人間の労働者の適合性を高めるために、組み立て戦略を最適化し、人間ロボット協調作業における労働者の努力を分配する新しい手法を提案する。
協調モデルでは、役割割り当て問題にも適合したAND/ORグラフを利用する。
割り当てアルゴリズムは、人間操作者の人間工学的ステータスとタスク特性を記述するために、オンラインで計算される定量的測定を考察する。
提案手法がタスク割当プロセスの制御に成功し,人間作業者の安全と人間工学的条件を確保することを実証する予備実験を行った。
関連論文リスト
- Constrained Human-AI Cooperation: An Inclusive Embodied Social Intelligence Challenge [47.74313897705183]
CHAICは、インボディードエージェントの社会的知覚と協力をテストするために設計された包括的インボディード・ソーシャル・インテリジェンス・チャレンジである。
CHAICの目標は、身体的制約の下で活動している可能性がある人間を支援するために、自我中心の観察装置を備えたエンボディエージェントである。
我々は,この課題に対する計画ベースラインと学習ベースラインのベンチマークを行い,大規模言語モデルと行動モデリングを活用した新しい手法を提案する。
論文 参考訳(メタデータ) (2024-11-04T04:41:12Z) - Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
本稿では,ワークステーションの注文処理,アイテムポッドの割り当て,ワークステーションでの注文処理のスケジュールを最適化することで,ウェアハウジングにおけるロボット部品対ピッカー操作を支援する。
そこで我々は, 大規模近傍探索を用いて, サブプロブレム生成に対する学習を最適化する手法を提案する。
Amazon Roboticsと共同で、我々のモデルとアルゴリズムは、最先端のアプローチよりも、実用的な問題に対するより強力なソリューションを生み出していることを示す。
論文 参考訳(メタデータ) (2024-08-29T20:22:22Z) - Online Learning of Human Constraints from Feedback in Shared Autonomy [25.173950581816086]
人間とのリアルタイムなコラボレーションは、様々な物理的制約によって生じる人間の行動パターンが異なるため、課題を提起する。
我々は、異なる人間のオペレータの多様な振る舞いを考慮した人間の制約モデルを学ぶ。
本研究では,人間の身体的制約を学習し,適応できる補助エージェントを提案する。
論文 参考訳(メタデータ) (2024-03-05T13:53:48Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
複雑なタスク解決のためのLarge Language Models(LLM)に基づくヒューマンエージェントコラボレーションの問題を紹介する。
Reinforcement Learning-based Human-Agent Collaboration method, ReHACを提案する。
このアプローチには、タスク解決プロセスにおける人間の介入の最も急進的な段階を決定するために設計されたポリシーモデルが含まれている。
論文 参考訳(メタデータ) (2024-02-20T11:03:36Z) - Offline Risk-sensitive RL with Partial Observability to Enhance
Performance in Human-Robot Teaming [1.3980986259786223]
本稿では,モデルの不確実性を取り入れ,リスクに敏感なシーケンシャルな意思決定を可能にする手法を提案する。
シミュレーションロボット遠隔操作環境において,26名の被験者を対象に実験を行った。
論文 参考訳(メタデータ) (2024-02-08T14:27:34Z) - Optimal task and motion planning and execution for human-robot
multi-agent systems in dynamic environments [54.39292848359306]
本稿では,タスクのシーケンシング,割り当て,実行を最適化するタスクと動作計画の組み合わせを提案する。
このフレームワークはタスクとアクションの分離に依存しており、アクションはシンボル的タスクの幾何学的実現の可能な1つの可能性である。
ロボットアームと人間の作業員がモザイクを組み立てる共同製造シナリオにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-03-27T01:50:45Z) - Increased Complexity of a Human-Robot Collaborative Task May Increase
the Need for a Socially Competent Robot [0.0]
本研究では,タスクの複雑さがロボットパートナーの認知と受容にどのように影響するかを検討する。
本稿では,人間による障害物回避ロボット制御モデルを提案する。
論文 参考訳(メタデータ) (2022-07-11T11:43:27Z) - Computational ergonomics for task delegation in Human-Robot
Collaboration: spatiotemporal adaptation of the robot to the human through
contactless gesture recognition [0.0]
本稿では,人間工学的に有効なタスクデリゲートとヒューマン・ヒューマン・コラボレーション(HRC)の2つの仮説を提案する。
第1の仮説では、縮小されたセンサー群からのモーションデータを用いて人間工学的なタスクを定量化することが可能である。
第2の仮説は、ジェスチャー認識と空間適応を含めることで、不要な動きを避けることで、HRCシナリオのエルゴノミクスを改善することができるというものである。
論文 参考訳(メタデータ) (2022-03-21T14:23:00Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
本稿では,REMPを用いた短時間キャリブレーションにより,ロボットが到達できると考える非専門家と地道とのギャップを効果的に埋めることができることを示す。
この校正手順は,ユーザ認識の向上だけでなく,人間とロボットのコラボレーションの効率化にも寄与することを示す。
論文 参考訳(メタデータ) (2021-03-06T09:14:30Z) - Deployment and Evaluation of a Flexible Human-Robot Collaboration Model
Based on AND/OR Graphs in a Manufacturing Environment [2.3848738964230023]
協調ロボットを製造業に効果的に展開する上での大きなボトルネックは、タスク計画アルゴリズムを開発することである。
本研究では,人間とロボットの協調を必要とするパレット化作業について検討した。
本研究は,職場における作業者の柔軟性と快適さを活かし,人間とロボットの協調モデルをいかに活用できるかを実証するものである。
論文 参考訳(メタデータ) (2020-07-13T22:05:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。