Damage Estimation and Localization from Sparse Aerial Imagery
- URL: http://arxiv.org/abs/2111.03708v1
- Date: Fri, 5 Nov 2021 19:12:15 GMT
- Title: Damage Estimation and Localization from Sparse Aerial Imagery
- Authors: Rene Garcia Franceschini, Jeffrey Liu, Saurabh Amin
- Abstract summary: Much of post-disaster aerial imagery is still taken by handheld DSLR cameras from small, manned, fixed-wing aircraft.
We propose an approach to both detect damage in aerial images and localize it in world coordinates.
We evaluate the performance of our approach on post-event data from the 2016 Louisiana floods, and find that our approach achieves a precision of 88%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aerial images provide important situational awareness for responding to
natural disasters such as hurricanes. They are well-suited for providing
information for damage estimation and localization (DEL); i.e., characterizing
the type and spatial extent of damage following a disaster. Despite recent
advances in sensing and unmanned aerial systems technology, much of
post-disaster aerial imagery is still taken by handheld DSLR cameras from
small, manned, fixed-wing aircraft. However, these handheld cameras lack IMU
information, and images are taken opportunistically post-event by operators. As
such, DEL from such imagery is still a highly manual and time-consuming
process. We propose an approach to both detect damage in aerial images and
localize it in world coordinates, with specific focus on detecting and
localizing flooding. The approach is based on using structure from motion to
relate image coordinates to world coordinates via a projective transformation,
using class activation mapping to detect the extent of damage in an image, and
applying the projective transformation to localize damage in world coordinates.
We evaluate the performance of our approach on post-event data from the 2016
Louisiana floods, and find that our approach achieves a precision of 88%. Given
this high precision using limited data, we argue that this approach is
currently viable for fast and effective DEL from handheld aerial imagery for
disaster response.
Related papers
- Generalizable Disaster Damage Assessment via Change Detection with Vision Foundation Model [17.016411785224317]
We present DAVI (Disaster Assessment with VIsion foundation model), which overcomes domain disparities and detects structural damage without requiring ground-truth labels of the target region.
DAVI integrates task-specific knowledge from a model trained on source regions with an image segmentation foundation model to generate pseudo labels of possible damage in the target region.
It then employs a two-stage refinement process, targeting both the pixel and overall image, to more accurately pinpoint changes in disaster-struck areas.
arXiv Detail & Related papers (2024-06-12T09:21:28Z) - Causality-informed Rapid Post-hurricane Building Damage Detection in
Large Scale from InSAR Imagery [6.331801334141028]
Timely and accurate assessment of hurricane-induced building damage is crucial for effective post-hurricane response and recovery efforts.
Recently, remote sensing technologies provide large-scale optical or Interferometric Synthetic Aperture Radar (InSAR) imagery data immediately after a disastrous event.
These InSAR imageries often contain highly noisy and mixed signals induced by co-occurring or co-located building damage, flood, flood/wind-induced vegetation changes, as well as anthropogenic activities.
This paper introduces an approach for rapid post-hurricane building damage detection from InSAR imagery.
arXiv Detail & Related papers (2023-10-02T18:56:05Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - On the Generation of a Synthetic Event-Based Vision Dataset for
Navigation and Landing [69.34740063574921]
This paper presents a methodology for generating event-based vision datasets from optimal landing trajectories.
We construct sequences of photorealistic images of the lunar surface with the Planet and Asteroid Natural Scene Generation Utility.
We demonstrate that the pipeline can generate realistic event-based representations of surface features by constructing a dataset of 500 trajectories.
arXiv Detail & Related papers (2023-08-01T09:14:20Z) - Unpaired Overwater Image Defogging Using Prior Map Guided CycleGAN [60.257791714663725]
We propose a Prior map Guided CycleGAN (PG-CycleGAN) for defogging of images with overwater scenes.
The proposed method outperforms the state-of-the-art supervised, semi-supervised, and unsupervised defogging approaches.
arXiv Detail & Related papers (2022-12-23T03:00:28Z) - 6D Camera Relocalization in Visually Ambiguous Extreme Environments [79.68352435957266]
We propose a novel method to reliably estimate the pose of a camera given a sequence of images acquired in extreme environments such as deep seas or extraterrestrial terrains.
Our method achieves comparable performance with state-of-the-art methods on the indoor benchmark (7-Scenes dataset) using only 20% training data.
arXiv Detail & Related papers (2022-07-13T16:40:02Z) - Progressive Depth Learning for Single Image Dehazing [56.71963910162241]
Existing dehazing methods often ignore the depth cues and fail in distant areas where heavier haze disturbs the visibility.
We propose a deep end-to-end model that iteratively estimates image depths and transmission maps.
Our approach benefits from explicitly modeling the inner relationship of image depth and transmission map, which is especially effective for distant hazy areas.
arXiv Detail & Related papers (2021-02-21T05:24:18Z) - Post-Hurricane Damage Assessment Using Satellite Imagery and Geolocation
Features [0.2538209532048866]
We propose a mixed data approach, which leverages publicly available satellite imagery and geolocation features of the affected area to identify damaged buildings after a hurricane.
The method demonstrated significant improvement from performing a similar task using only imagery features, based on a case study of Hurricane Harvey affecting Greater Houston area in 2017.
In this work, a creative choice of the geolocation features was made to provide extra information to the imagery features, but it is up to the users to decide which other features can be included to model the physical behavior of the events, depending on their domain knowledge and the type of disaster.
arXiv Detail & Related papers (2020-12-15T21:30:19Z) - FloodNet: A High Resolution Aerial Imagery Dataset for Post Flood Scene
Understanding [0.9786690381850354]
FloodNet is a high resolution UAV imagery, captured after the hurricane Harvey.
This dataset demonstrates the post flooded damages of the affected areas.
With the advancement of deep learning algorithms, we can analyze the impact of any disaster which can make a precise understanding of the affected areas.
arXiv Detail & Related papers (2020-12-05T05:15:36Z) - Physics-informed GANs for Coastal Flood Visualization [65.54626149826066]
We create a deep learning pipeline that generates visual satellite images of current and future coastal flooding.
By evaluating the imagery relative to physics-based flood maps, we find that our proposed framework outperforms baseline models in both physical-consistency and photorealism.
While this work focused on the visualization of coastal floods, we envision the creation of a global visualization of how climate change will shape our earth.
arXiv Detail & Related papers (2020-10-16T02:15:34Z) - An Attention-Based System for Damage Assessment Using Satellite Imagery [18.43310705820528]
We present Siam-U-Net-Attn model - a multi-class deep learning model with an attention mechanism - to assess damage levels of buildings.
We evaluate the proposed method on xView2, a large-scale building damage assessment dataset, and demonstrate that the proposed approach achieves accurate damage scale classification and building segmentation results simultaneously.
arXiv Detail & Related papers (2020-04-14T16:37:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.