An Attention-Based System for Damage Assessment Using Satellite Imagery
- URL: http://arxiv.org/abs/2004.06643v1
- Date: Tue, 14 Apr 2020 16:37:55 GMT
- Title: An Attention-Based System for Damage Assessment Using Satellite Imagery
- Authors: Hanxiang Hao, Sriram Baireddy, Emily R. Bartusiak, Latisha Konz, Kevin
LaTourette, Michael Gribbons, Moses Chan, Mary L. Comer, Edward J. Delp
- Abstract summary: We present Siam-U-Net-Attn model - a multi-class deep learning model with an attention mechanism - to assess damage levels of buildings.
We evaluate the proposed method on xView2, a large-scale building damage assessment dataset, and demonstrate that the proposed approach achieves accurate damage scale classification and building segmentation results simultaneously.
- Score: 18.43310705820528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When disaster strikes, accurate situational information and a fast, effective
response are critical to save lives. Widely available, high resolution
satellite images enable emergency responders to estimate locations, causes, and
severity of damage. Quickly and accurately analyzing the extensive amount of
satellite imagery available, though, requires an automatic approach. In this
paper, we present Siam-U-Net-Attn model - a multi-class deep learning model
with an attention mechanism - to assess damage levels of buildings given a pair
of satellite images depicting a scene before and after a disaster. We evaluate
the proposed method on xView2, a large-scale building damage assessment
dataset, and demonstrate that the proposed approach achieves accurate damage
scale classification and building segmentation results simultaneously.
Related papers
- Multi-step feature fusion for natural disaster damage assessment on satellite images [0.0]
We introduce a novel convolutional neural network (CNN) module that performs feature fusion at multiple network levels.
An additional network element - Fuse Module - was proposed to adapt any CNN model to analyze image pairs.
We report over a 3 percentage point increase in the accuracy of the Vision Transformer model.
arXiv Detail & Related papers (2024-10-29T09:47:32Z) - Weakly-supervised Camera Localization by Ground-to-satellite Image Registration [52.54992898069471]
We propose a weakly supervised learning strategy for ground-to-satellite image registration.
It derives positive and negative satellite images for each ground image.
We also propose a self-supervision strategy for cross-view image relative rotation estimation.
arXiv Detail & Related papers (2024-09-10T12:57:16Z) - Towards Efficient Disaster Response via Cost-effective Unbiased Class Rate Estimation through Neyman Allocation Stratified Sampling Active Learning [11.697034536189094]
We present an innovative algorithm that constructs Neyman stratified random sampling trees for binary classification.
Our findings demonstrate that our method surpasses both passive and conventional active learning techniques.
It effectively addresses the'sampling bias' challenge in traditional active learning strategies.
arXiv Detail & Related papers (2024-05-28T01:34:35Z) - DeepDamageNet: A two-step deep-learning model for multi-disaster building damage segmentation and classification using satellite imagery [12.869300064524122]
We present a solution that performs the two most important tasks in building damage assessment, segmentation and classification, through deep-learning models.
Our best model couples a building identification semantic segmentation convolutional neural network (CNN) to a building damage classification CNN, with a combined F1 score of 0.66.
We find that though our model was able to identify buildings with relatively high accuracy, building damage classification across various disaster types is a difficult task.
arXiv Detail & Related papers (2024-05-08T04:21:03Z) - Building Coverage Estimation with Low-resolution Remote Sensing Imagery [65.95520230761544]
We propose a method for estimating building coverage using only publicly available low-resolution satellite imagery.
Our model achieves a coefficient of determination as high as 0.968 on predicting building coverage in regions of different levels of development around the world.
arXiv Detail & Related papers (2023-01-04T05:19:33Z) - Multi-view deep learning for reliable post-disaster damage
classification [0.0]
This study aims to enable more reliable automated post-disaster building damage classification using artificial intelligence (AI) and multi-view imagery.
The proposed model is trained and validated on reconnaissance visual dataset containing expert-labeled, geotagged images of the inspected buildings following hurricane Harvey.
arXiv Detail & Related papers (2022-08-06T01:04:13Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
We propose a Robust Detector (RobustDet) based on adversarially-aware convolution to disentangle gradients for model learning on clean and adversarial images.
Our model effectively disentangles gradients and significantly enhances the detection robustness with maintaining the detection ability on clean images.
arXiv Detail & Related papers (2022-07-13T13:59:59Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
Building damage detection can be automated by applying computer vision techniques to satellite imagery.
Models must be robust to a shift in distribution between disaster imagery available for training and the images of the new event.
We argue that future work should focus on the OOD regime instead.
arXiv Detail & Related papers (2020-11-20T10:30:43Z) - Cross-directional Feature Fusion Network for Building Damage Assessment
from Satellite Imagery [26.767229623170497]
Building damage assessment from satellite imagery is critical before an effective response is conducted.
We propose a novel cross-directional fusion strategy to better explore the correlations between pre- and post-disaster images.
The proposed method achieves state-of-the-art performance on a large-scale building damage assessment dataset.
arXiv Detail & Related papers (2020-10-27T02:49:52Z) - MSNet: A Multilevel Instance Segmentation Network for Natural Disaster
Damage Assessment in Aerial Videos [74.22132693931145]
We study the problem of efficiently assessing building damage after natural disasters like hurricanes, floods or fires.
The first contribution is a new dataset, consisting of user-generated aerial videos from social media with annotations of instance-level building damage masks.
The second contribution is a new model, namely MSNet, which contains novel region proposal network designs.
arXiv Detail & Related papers (2020-06-30T02:23:05Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNet is a unified model that can simultaneously segment buildings and assess the damage levels to individual buildings and can be trained end-to-end.
RescueNet is tested on the large scale and diverse xBD dataset and achieves significantly better building segmentation and damage classification performance than previous methods.
arXiv Detail & Related papers (2020-04-15T19:52:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.