Experimental demonstration of coherence flow in $\mathcal{PT}$- and
anti-$\mathcal{PT}$-symmetric systems
- URL: http://arxiv.org/abs/2111.03803v1
- Date: Sat, 6 Nov 2021 04:49:45 GMT
- Title: Experimental demonstration of coherence flow in $\mathcal{PT}$- and
anti-$\mathcal{PT}$-symmetric systems
- Authors: Yu-Liang Fang, Jun-Long Zhao, Yu Zhang, Dong-Xu Chen, Qi-Cheng Wu,
Yan-Hui Zhou, Chui-Ping Yang, Franco Nori
- Abstract summary: Non-Hermitian parity-time ($mathcalPT$) and anti-parity-time ($mathcalAPT$)-symmetric systems exhibit novel quantum properties.
Here, we experimentally demonstrate single-qubit coherence flow in $mathcalPT$- and $mathcalAPT$-symmetric systems using an optical setup.
- Score: 2.6168345242957582
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-Hermitian parity-time ($\mathcal{PT}$) and anti-parity-time
($\mathcal{APT}$)-symmetric systems exhibit novel quantum properties and have
attracted increasing interest. Although many counterintuitive phenomena in
$\mathcal{PT}$- and $\mathcal{APT}$-symmetric systems were previously studied,
coherence flow has been rarely investigated. Here, we experimentally
demonstrate single-qubit coherence flow in $\mathcal{PT}$- and
$\mathcal{APT}$-symmetric systems using an optical setup. In the symmetry
unbroken regime, we observe different periodic oscillations of coherence.
Particularly, we observe two complete coherence backflows in one period in the
$\mathcal{PT}$-symmetric system, while only one backflow in the
$\mathcal{APT}$-symmetric system. Moreover, in the symmetry broken regime, we
observe the phenomenon of stable value of coherence flow. We derive the
analytic proofs of these phenomena and show that most experimental data agree
with theoretical results within one standard deviation. This work opens avenues
for future study on the dynamics of coherence in $\mathcal{PT}$- and
$\mathcal{APT}$-symmetric systems.
Related papers
- Three perspectives on entropy dynamics in a non-Hermitian two-state system [41.94295877935867]
entropy dynamics as an indicator of physical behavior in an open two-state system with balanced gain and loss is presented.
We distinguish the perspective taken in utilizing the conventional framework of Hermitian-adjoint states from an approach that is based on biorthogonal-adjoint states and a third case based on an isospectral mapping.
arXiv Detail & Related papers (2024-04-04T14:45:28Z) - Multipartite entanglement in the diagonal symmetric subspace [41.94295877935867]
For diagonal symmetric states, we show that there is no bound entanglement for $d = 3,4 $ and $N = 3$.
We present a constructive algorithm to map multipartite diagonal symmetric states of qudits onto bipartite symmetric states of larger local dimension.
arXiv Detail & Related papers (2024-03-08T12:06:16Z) - Quantum chaos in PT symmetric quantum systems [2.2530496464901106]
We study the interplay between $mathcalPT$-symmetry and quantum chaos in a non-Hermitian dynamical system.
We find that the complex level spacing ratio can distinguish between all three phases.
In the phases with $mathcalPT$-symmetry, the OTOC exhibits behaviour akin to what is observed in the Hermitian system.
arXiv Detail & Related papers (2024-01-14T06:47:59Z) - Quantum Current and Holographic Categorical Symmetry [62.07387569558919]
A quantum current is defined as symmetric operators that can transport symmetry charges over an arbitrary long distance.
The condition for quantum currents to be superconducting is also specified, which corresponds to condensation of anyons in one higher dimension.
arXiv Detail & Related papers (2023-05-22T11:00:25Z) - Towards Antisymmetric Neural Ansatz Separation [48.80300074254758]
We study separations between two fundamental models of antisymmetric functions, that is, functions $f$ of the form $f(x_sigma(1), ldots, x_sigma(N))
These arise in the context of quantum chemistry, and are the basic modeling tool for wavefunctions of Fermionic systems.
arXiv Detail & Related papers (2022-08-05T16:35:24Z) - Entanglement Dynamics in Anti-$\mathcal{PT}$-Symmetric Systems [2.5087808172987187]
entanglement dynamics in $mathcalAPT$-symmetric systems has not previously been investigated in both theory and experiments.
Here, we investigate the entanglement evolution of two qubits in an $mathcalAPT$-symmetric system.
Our findings reveal novel phenomena of entanglement evolution in the $mathcalAPT$-symmetric system.
arXiv Detail & Related papers (2022-07-14T08:48:49Z) - Global Convergence of Gradient Descent for Asymmetric Low-Rank Matrix
Factorization [49.090785356633695]
We study the asymmetric low-rank factorization problem: [mathbfU in mathbbRm min d, mathbfU$ and mathV$.
arXiv Detail & Related papers (2021-06-27T17:25:24Z) - Fermion and meson mass generation in non-Hermitian Nambu--Jona-Lasinio
models [77.34726150561087]
We investigate the effects of non-Hermiticity on interacting fermionic systems.
We do this by including non-Hermitian bilinear terms into the 3+1 dimensional Nambu--Jona-Lasinio (NJL) model.
arXiv Detail & Related papers (2021-02-02T13:56:11Z) - Stable States with Non-Zero Entropy under Broken $\mathcal{PT}$-Symmetry [1.3049516752695611]
We focus on the dynamical features of a triple-qubit system, one of which evolves under local $mathcalPT$-symmetric Hamiltonian.
A new kind of abnormal dynamic pattern in the entropy evolution process is identified, which presents a parameter-dependent stable state.
Our work reveals the distinctive dynamic features in the triple-qubit $mathcalPT$-symmetric system and paves the way for practical quantum simulation of multi-party non-Hermitian system on quantum computers.
arXiv Detail & Related papers (2021-01-01T05:56:28Z) - Connecting active and passive $\mathcal{PT}$-symmetric Floquet
modulation models [0.0]
We present a simple model of a time-dependent $mathcalPT$-symmetric Hamiltonian which smoothly connects the static case, a $mathcalPT$-symmetric Floquet case, and a neutral-$mathcalPT$-symmetric case.
We show that slivers of $mathcalPT$-broken ($mathcalPT$-symmetric) phase extend deep into the nominally low (high) non-Hermiticity region.
arXiv Detail & Related papers (2020-08-04T20:14:20Z) - Quantum correlations in $\mathcal{PT}$-symmetric systems [0.0]
We study the dynamics of correlations in a paradigmatic setup to observe $mathcalPT$-symmetric physics.
Starting from a coherent state, quantum correlations (QCs) are created, despite the system being driven only incoherently, and can survive indefinitely.
arXiv Detail & Related papers (2020-02-25T19:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.