Mesoscopic Fluctuations and Multifractality at and across Measurement-Induced Phase Transition
- URL: http://arxiv.org/abs/2507.11312v1
- Date: Tue, 15 Jul 2025 13:44:14 GMT
- Title: Mesoscopic Fluctuations and Multifractality at and across Measurement-Induced Phase Transition
- Authors: Igor Poboiko, Igor V. Gornyi, Alexander D. Mirlin,
- Abstract summary: We explore statistical fluctuations over the ensemble of quantum trajectories in a model of two-dimensional free fermions.<n>Our results exhibit a remarkable analogy to Anderson localization, with $G_AB$ corresponding to two-terminal conductance.<n>Our findings lay the groundwork for mesoscopic theory of monitored systems, paving the way for various extensions.
- Score: 46.176861415532095
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore statistical fluctuations over the ensemble of quantum trajectories in a model of two-dimensional free fermions subject to projective monitoring of local charge across the measurement-induced phase transition. Our observables are the particle-number covariance between spatially separated regions, $G_{AB}$, and the two-point density correlation function, $\mathcal{C}(r)$. Our results exhibit a remarkable analogy to Anderson localization, with $G_{AB}$ corresponding to two-terminal conductance and $\mathcal{C}(r)$ to two-point conductance, albeit with different replica limit and unconventional symmetry class, geometry, and boundary conditions. In the delocalized phase, $G_{AB}$ exhibits ``universal'', nearly Gaussian, fluctuations with variance of order unity. In the localized phase, we find a broad distribution of $G_{AB}$ with $\overline{-\ln G_{AB}} \sim L $ (where $L$ is the system size) and the variance $\mathrm{var}(\ln G_{AB}) \sim L^\mu$, and similarly for $\mathcal{C}(r)$, with $\mu \approx 0.5$. At the transition point, the distribution function of $G_{AB}$ becomes scale-invariant and $\mathcal{C}(r)$ exhibits multifractal statistics, $\overline{\mathcal{C}^{q}(r)}\sim r^{-q(d+1) - \Delta_{q}}$. We characterize the spectrum of multifractal dimensions $\Delta_q$. Our findings lay the groundwork for mesoscopic theory of monitored systems, paving the way for various extensions.
Related papers
- Many neighbors little entanglement: A curious scaling in the variable-range extended Ising model [0.0]
We study the two-point correlation functions and the bipartite entanglement in the ground state of the exactly-solvable variable-range extended Ising model of qubits.
arXiv Detail & Related papers (2025-04-02T15:54:52Z) - Dimension-free Private Mean Estimation for Anisotropic Distributions [55.86374912608193]
Previous private estimators on distributions over $mathRd suffer from a curse of dimensionality.
We present an algorithm whose sample complexity has improved dependence on dimension.
arXiv Detail & Related papers (2024-11-01T17:59:53Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Measurement-induced phase transition for free fermions above one dimension [46.176861415532095]
Theory of the measurement-induced entanglement phase transition for free-fermion models in $d>1$ dimensions is developed.
Critical point separates a gapless phase with $elld-1 ln ell$ scaling of the second cumulant of the particle number and of the entanglement entropy.
arXiv Detail & Related papers (2023-09-21T18:11:04Z) - Phase Diagram of the Two-Flavor Schwinger Model at Zero Temperature [0.0]
We find interesting effects at $theta=pi$: along the $SU(2)$-invariant line $m_lat = m- g2 a/4$.
In this regime there is a non-perturbatively small mass gap $sim e- A g2/m2$.
arXiv Detail & Related papers (2023-05-08T03:17:48Z) - Theory of free fermions under random projective measurements [43.04146484262759]
We develop an analytical approach to the study of one-dimensional free fermions subject to random projective measurements of local site occupation numbers.
We derive a non-linear sigma model (NLSM) as an effective field theory of the problem.
arXiv Detail & Related papers (2023-04-06T15:19:33Z) - Full Counting Statistics across the Entanglement Phase Transition of
Non-Hermitian Hamiltonians with Charge Conservations [4.923287660970805]
We study the full counting statistics (FCS) $Z(phi, O)equiv sum_o eiphi oP(o)$ for 1D systems described by non-Hermitian SYK-like models.
In both the volume-law entangled phase for interacting systems and the critical phase for non-interacting systems, the conformal symmetry emerges, which gives $F(phi, Q_A)equiv log Z(phi, Q_A)sim phi2log |A|$
arXiv Detail & Related papers (2023-02-19T03:51:04Z) - Quantum phase transitions in non-Hermitian
$\mathcal{P}\mathcal{T}$-symmetric transverse-field Ising spin chains [0.0]
We present a theoretical study of quantum phases and quantum phase transitions occurring in non-Hermitian $mathcalPmathcalT$-symmetric superconducting qubits chains.
A non-Hermitian part of the Hamiltonian is implemented via imaginary staggered textitlongitudinal magnetic field.
We obtain two quantum phases for $J0$, namely, $mathcalPmathcalT$-symmetry broken antiferromagnetic state and $mathcalPmathcalT$-symmetry preserved paramagnetic state
arXiv Detail & Related papers (2022-11-01T18:10:12Z) - Dynamical Signatures of Chaos to Integrability Crossover in $2\times 2$
Generalized Random Matrix Ensembles [0.0]
We study the energy correlations by calculating the density and 2nd moment of the Nearest Neighbor Spacing (NNS)
We observe that for large $N$ the 2nd moment of NNS and the relative depth of the correlation hole exhibit a second order phase transition at $gamma=2$.
arXiv Detail & Related papers (2020-10-28T05:02:13Z) - A Random Matrix Analysis of Random Fourier Features: Beyond the Gaussian
Kernel, a Precise Phase Transition, and the Corresponding Double Descent [85.77233010209368]
This article characterizes the exacts of random Fourier feature (RFF) regression, in the realistic setting where the number of data samples $n$ is all large and comparable.
This analysis also provides accurate estimates of training and test regression errors for large $n,p,N$.
arXiv Detail & Related papers (2020-06-09T02:05:40Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP)
We show that the number of samples needed to yield an entrywise $varepsilon$-accurate estimate of the Q-function is at most on the order of $frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$ up to some logarithmic factor.
arXiv Detail & Related papers (2020-06-04T17:51:00Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.