Deep Learning Based Model for Breast Cancer Subtype Classification
- URL: http://arxiv.org/abs/2111.03923v2
- Date: Tue, 9 Nov 2021 20:01:48 GMT
- Title: Deep Learning Based Model for Breast Cancer Subtype Classification
- Authors: Sheetal Rajpal, Virendra Kumar, Manoj Agarwal, Naveen Kumar
- Abstract summary: This paper focuses on the use of gene expression data for the classification of breast cancer into four subtypes, Basal, Her2, LumA, and LumB.
The size of the feature set is reduced from 20,530 gene expression values to 500 by using an autoencoder.
By deploying the combined network of stages 1 and 2, we have been able to attain a mean 10-fold test accuracy of 0.907 on the TCGA breast cancer dataset.
- Score: 3.419451872918847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Breast cancer has long been a prominent cause of mortality among women.
Diagnosis, therapy, and prognosis are now possible, thanks to the availability
of RNA sequencing tools capable of recording gene expression data. Molecular
subtyping being closely related to devising clinical strategy and prognosis,
this paper focuses on the use of gene expression data for the classification of
breast cancer into four subtypes, namely, Basal, Her2, LumA, and LumB. In stage
1, we suggested a deep learning-based model that uses an autoencoder to reduce
dimensionality. The size of the feature set is reduced from 20,530 gene
expression values to 500 by using an autoencoder. This encoded representation
is passed to the deep neural network of the second stage for the classification
of patients into four molecular subtypes of breast cancer. By deploying the
combined network of stages 1 and 2, we have been able to attain a mean 10-fold
test accuracy of 0.907 on the TCGA breast cancer dataset. The proposed
framework is fairly robust throughout 10 different runs, as shown by the
boxplot for classification accuracy. Compared to related work reported in the
literature, we have achieved a competitive outcome. In conclusion, the proposed
two-stage deep learning-based model is able to accurately classify four breast
cancer subtypes, highlighting the autoencoder's capacity to deduce the compact
representation and the neural network classifier's ability to correctly label
breast cancer patients.
Related papers
- Biomarker based Cancer Classification using an Ensemble with Pre-trained Models [2.2436844508175224]
We propose a novel ensemble model combining pre-trained Hyperfast model, XGBoost, and LightGBM for multi-class classification tasks.
We leverage a meta-trained Hyperfast model for classifying cancer, accomplishing the highest AUC of 0.9929.
We also propose a novel ensemble model combining pre-trained Hyperfast model, XGBoost, and LightGBM for multi-class classification tasks, achieving an incremental increase in accuracy (0.9464)
arXiv Detail & Related papers (2024-06-14T14:43:59Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
Cancer is the second major cause of death after cardiovascular diseases.
Gene expression can play a fundamental role in the early detection of cancer.
This study reviews recent progress in gene expression analysis for cancer classification using machine learning methods.
arXiv Detail & Related papers (2023-01-28T15:03:03Z) - High-resolution synthesis of high-density breast mammograms: Application
to improved fairness in deep learning based mass detection [48.88813637974911]
Computer-aided detection systems based on deep learning have shown good performance in breast cancer detection.
High-density breasts show poorer detection performance since dense tissues can mask or even simulate masses.
This study aims to improve the mass detection performance in high-density breasts using synthetic high-density full-field digital mammograms.
arXiv Detail & Related papers (2022-09-20T15:57:12Z) - Breast Cancer Classification Based on Histopathological Images Using a
Deep Learning Capsule Network [0.0]
This study aims to classify different types of breast cancer using histological images (HIs)
We present an enhanced capsule network that extracts multi-scale features using the Res2Net block and four additional convolutional layers.
As a result, the new method outperforms the old ones since it automatically learns the best possible features.
arXiv Detail & Related papers (2022-08-01T03:45:36Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Biomarker Gene Identification for Breast Cancer Classification [2.403531305046943]
The present work uses interpretable predictions made by the deep neural network employed for subtype classification to identify biomarkers.
The proposed algorithm led to the discovery of a set of 43 differentially expressed gene signatures.
arXiv Detail & Related papers (2021-11-10T06:38:50Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - A Deep Embedded Refined Clustering Approach for Breast Cancer
Distinction based on DNA Methylation [0.0]
We propose a deep embedded refined clustering method for breast cancer differentiation based on DNA methylation.
The proposed approach is composed of two main stages. The first stage consists in the dimensionality reduction of the methylation data based on an autoencoder.
The second stage is a clustering algorithm based on the soft-assignment of the latent space provided by the autoencoder.
arXiv Detail & Related papers (2021-02-18T16:46:25Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Synthesizing lesions using contextual GANs improves breast cancer
classification on mammograms [0.4297070083645048]
We present a novel generative adversarial network (GAN) model for data augmentation that can realistically synthesize and remove lesions on mammograms.
With self-attention and semi-supervised learning components, the U-net-based architecture can generate high resolution (256x256px) outputs.
arXiv Detail & Related papers (2020-05-29T21:23:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.