An Artificial Intelligence Model for Early Stage Breast Cancer Detection from Biopsy Images
- URL: http://arxiv.org/abs/2505.20332v1
- Date: Sat, 24 May 2025 09:11:50 GMT
- Title: An Artificial Intelligence Model for Early Stage Breast Cancer Detection from Biopsy Images
- Authors: Neil Chaudhary, Zaynah Dhunny,
- Abstract summary: This paper presents an artificial intelligence enabled tool designed to aid in the identification of breast cancer types.<n>The proposed model utilizes a convolutional neural network (CNN) architecture to distinguish between benign and malignant tissues.<n> Experimental results on such datasets demonstrate the model's effectiveness, outperforming several existing solutions in terms of accuracy, precision, recall, and F1-score.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate identification of breast cancer types plays a critical role in guiding treatment decisions and improving patient outcomes. This paper presents an artificial intelligence enabled tool designed to aid in the identification of breast cancer types using histopathological biopsy images. Traditionally additional tests have to be done on women who are detected with breast cancer to find out the types of cancer it is to give the necessary cure. Those tests are not only invasive but also delay the initiation of treatment and increase patient burden. The proposed model utilizes a convolutional neural network (CNN) architecture to distinguish between benign and malignant tissues as well as accurate subclassification of breast cancer types. By preprocessing the images to reduce noise and enhance features, the model achieves reliable levels of classification performance. Experimental results on such datasets demonstrate the model's effectiveness, outperforming several existing solutions in terms of accuracy, precision, recall, and F1-score. The study emphasizes the potential of deep learning techniques in clinical diagnostics and offers a promising tool to assist pathologists in breast cancer classification.
Related papers
- Leveraging Medical Foundation Model Features in Graph Neural Network-Based Retrieval of Breast Histopathology Images [1.48419209885019]
We propose a novel attention-based adversarially regularized variational graph autoencoder model for breast histological image retrieval.<n>Our top-performing model, trained with UNI features, achieved average mAP/mMV scores of 96.7%/91.5% and 97.6%/94.2% for the BreakHis and BACH datasets, respectively.
arXiv Detail & Related papers (2024-05-07T11:24:37Z) - Breast Cancer Detection and Diagnosis: A comparative study of
state-of-the-arts deep learning architectures [3.883460584034766]
The survival rates for breast cancer patients in certain third-world countries, like South Africa, are alarmingly low.
Medical specialists and researchers have turned to domain-specific AI approaches, specifically deep learning models, to develop end-to-end solutions.
This research focuses on evaluating the performance of various cutting-edge convolutional neural network (CNN) architectures in comparison to a relatively new model called the Vision Trans-former (ViT)
arXiv Detail & Related papers (2023-05-31T15:21:34Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
We investigate enhancing clinical support for breast cancer with deep learning models.
We leverage a volumetric convolutional neural network to learn deep radiomic features from a pre-treatment cohort.
We find that the proposed approach can achieve better performance for both grade and post-treatment response prediction.
arXiv Detail & Related papers (2022-11-10T03:02:12Z) - Breast Cancer Classification Based on Histopathological Images Using a
Deep Learning Capsule Network [0.0]
This study aims to classify different types of breast cancer using histological images (HIs)
We present an enhanced capsule network that extracts multi-scale features using the Res2Net block and four additional convolutional layers.
As a result, the new method outperforms the old ones since it automatically learns the best possible features.
arXiv Detail & Related papers (2022-08-01T03:45:36Z) - Breast Cancer Classification using Deep Learned Features Boosted with
Handcrafted Features [0.0]
It is of utmost importance for the research community to come up with the framework for early detection, classification and diagnosis.
In this article, a novel framework for classification of breast cancer using mammograms is proposed.
The proposed framework combines robust features extracted from novel Convolutional Neural Network (CNN) features with handcrafted features.
arXiv Detail & Related papers (2022-06-26T07:54:09Z) - HoVer-Trans: Anatomy-aware HoVer-Transformer for ROI-free Breast Cancer
Diagnosis in Ultrasound Images [20.00255523765042]
We propose a novel ROI-free model for breast cancer diagnosis in ultrasound images with interpretable feature representations.
We leverage the anatomical prior knowledge that malignant and benign tumors have different spatial relationships between different tissue layers.
The proposed HoVer-Trans block extracts the inter- and intra-layer spatial information horizontally and vertically.
arXiv Detail & Related papers (2022-05-17T14:11:07Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
This paper introduces BI-RADS-Net, a novel explainable deep learning approach for cancer detection in breast ultrasound images.
The proposed approach incorporates tasks for explaining and classifying breast tumors, by learning feature representations relevant to clinical diagnosis.
Explanations of the predictions (benign or malignant) are provided in terms of morphological features that are used by clinicians for diagnosis and reporting in medical practice.
arXiv Detail & Related papers (2021-10-05T19:14:46Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
Super resolution ultrasound localization microscopy enables imaging of the microvasculature at the capillary level.
In this work we use a deep neural network architecture that makes effective use of signal structure to address these challenges.
By leveraging our trained network, the microvasculature structure is recovered in a short time, without prior PSF knowledge, and without requiring separability of the UCAs.
arXiv Detail & Related papers (2021-07-12T09:04:20Z) - DenseNet for Breast Tumor Classification in Mammographic Images [0.0]
The aim of this study is to build a deep convolutional neural network method for automatic detection, segmentation, and classification of breast lesions in mammography images.
Based on deep learning the Mask-CNN (RoIAlign) method was developed to features selection and extraction; and the classification was carried out by DenseNet architecture.
arXiv Detail & Related papers (2021-01-24T03:30:59Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.