論文の概要: A Deep Reinforcement Learning Approach for Composing Moving IoT Services
- arxiv url: http://arxiv.org/abs/2111.03967v1
- Date: Sat, 6 Nov 2021 22:02:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-09 16:47:30.115735
- Title: A Deep Reinforcement Learning Approach for Composing Moving IoT Services
- Title(参考訳): 動くIoTサービスを構成するための深層強化学習アプローチ
- Authors: Azadeh Ghari Neiat, Athman Bouguettaya, Mohammed Bahutair
- Abstract要約: 本稿では,移動領域としてモデル化されたクラウドソース型サービスモデルを提案する。
動作中のIoTサービスを選択し,構成するための,深層強化学習に基づく合成手法を提案する。
2つの実世界のデータセットに対する実験は、深層強化学習に基づくアプローチの有効性と効率性を検証する。
- 参考スコア(独自算出の注目度): 0.12891210250935145
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a novel framework for efficiently and effectively discovering
crowdsourced services that move in close proximity to a user over a period of
time. We introduce a moving crowdsourced service model which is modelled as a
moving region. We propose a deep reinforcement learning-based composition
approach to select and compose moving IoT services considering quality
parameters. Additionally, we develop a parallel flock-based service discovery
algorithm as a ground-truth to measure the accuracy of the proposed approach.
The experiments on two real-world datasets verify the effectiveness and
efficiency of the deep reinforcement learning-based approach.
- Abstract(参考訳): 本研究では,ユーザに近いクラウドソーシングサービスを,一定期間にわたって効率的に効率的に発見するための新しいフレームワークを開発する。
移動領域としてモデル化した移動クラウドソーシングサービスモデルを提案する。
品質パラメータを考慮した移動型IoTサービスの選択と構成を行うための,深層強化学習に基づく合成手法を提案する。
さらに,提案手法の精度を計測するための基盤として,並列群型サービスディスカバリアルゴリズムを開発した。
2つの実世界のデータセットの実験は、深層強化学習に基づくアプローチの有効性と効率を検証する。
関連論文リスト
- Parameter-Efficient Active Learning for Foundational models [7.799711162530711]
基礎的な視覚変換器モデルは、多くの視覚タスクにおいて、驚くほどのショットパフォーマンスを示している。
本研究は,アクティブラーニング(AL)フレームワークにおけるパラメータ効率の良い微調整手法の適用に関する新たな研究である。
論文 参考訳(メタデータ) (2024-06-13T16:30:32Z) - Context-Aware Orchestration of Energy-Efficient Gossip Learning Schemes [8.382766344930157]
本稿では,Gossip Learningと学習プロセスの適応最適化を組み合わせた分散学習手法を提案する。
本稿では,ノードごとのリアルタイムな最適化に依存するデータ駆動型OGL管理手法を提案する。
その結果,提案手法は幅広いネットワークシナリオにおいて極めて効率的かつ効果的であることが示唆された。
論文 参考訳(メタデータ) (2024-04-18T09:17:46Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - CosSGD: Nonlinear Quantization for Communication-efficient Federated
Learning [62.65937719264881]
フェデレーション学習は、これらのクライアントのローカルデータを中央サーバに転送することなく、クライアント間での学習を促進する。
圧縮勾配降下のための非線形量子化を提案し、フェデレーションラーニングで容易に利用することができる。
本システムは,訓練過程の収束と精度を維持しつつ,通信コストを最大3桁まで削減する。
論文 参考訳(メタデータ) (2020-12-15T12:20:28Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z) - Cluster Based Deep Contextual Reinforcement Learning for top-k
Recommendations [2.8207195763355704]
本稿では,強化学習を伴うクラスタリングのアンサンブルを作成することで,トップkレコメンデーションを生成する手法を提案する。
我々は,DB Scanクラスタリングを導入し,膨大なアイテム空間に対処した。
部分的な更新とバッチ更新によって、モデルはユーザパターンを継続的に学習する。
論文 参考訳(メタデータ) (2020-11-29T20:24:39Z) - Toward Multiple Federated Learning Services Resource Sharing in Mobile
Edge Networks [88.15736037284408]
本稿では,マルチアクセスエッジコンピューティングサーバにおいて,複数のフェデレーション付き学習サービスの新たなモデルについて検討する。
共同資源最適化とハイパーラーニング率制御の問題,すなわちMS-FEDLを提案する。
シミュレーションの結果,提案アルゴリズムの収束性能を実証した。
論文 参考訳(メタデータ) (2020-11-25T01:29:41Z) - Adaptive Serverless Learning [114.36410688552579]
本研究では,データから学習率を動的に計算できる適応型分散学習手法を提案する。
提案アルゴリズムは, 作業者数に対して線形高速化が可能であることを示す。
通信効率のオーバーヘッドを低減するため,通信効率のよい分散訓練手法を提案する。
論文 参考訳(メタデータ) (2020-08-24T13:23:02Z) - Dynamic Knowledge embedding and tracing [18.717482292051788]
本稿では,行列分解の手法と最近のリカレントニューラルネットワーク(RNN)の進歩を組み合わせた知識追跡手法を提案する。
提案するemphDynEmbフレームワークは,概念やスキルのタグ情報を使わずに,学生の知識の追跡を可能にする。
論文 参考訳(メタデータ) (2020-05-18T21:56:42Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
本稿では,ディープラーニング・アズ・ア・サービスのための分散アーキテクチャを提案する。
クラウドベースのマシンとディープラーニングサービスを提供しながら、ユーザの機密データを保存できる。
論文 参考訳(メタデータ) (2020-03-30T15:12:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。