Lattice gauge symmetry in neural networks
- URL: http://arxiv.org/abs/2111.04389v1
- Date: Mon, 8 Nov 2021 11:20:11 GMT
- Title: Lattice gauge symmetry in neural networks
- Authors: Matteo Favoni, Andreas Ipp, David I. M\"uller, Daniel Schuh
- Abstract summary: We review a novel neural network architecture called lattice gauge equivariant convolutional neural networks (L-CNNs)
We discuss the concept of gauge equivariance which we use to explicitly construct a gauge equivariant convolutional layer and a bilinear layer.
The performance of L-CNNs and non-equivariant CNNs is compared using seemingly simple non-linear regression tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We review a novel neural network architecture called lattice gauge
equivariant convolutional neural networks (L-CNNs), which can be applied to
generic machine learning problems in lattice gauge theory while exactly
preserving gauge symmetry. We discuss the concept of gauge equivariance which
we use to explicitly construct a gauge equivariant convolutional layer and a
bilinear layer. The performance of L-CNNs and non-equivariant CNNs is compared
using seemingly simple non-linear regression tasks, where L-CNNs demonstrate
generalizability and achieve a high degree of accuracy in their predictions
compared to their non-equivariant counterparts.
Related papers
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Neural Tangent Kernels Motivate Graph Neural Networks with
Cross-Covariance Graphs [94.44374472696272]
We investigate NTKs and alignment in the context of graph neural networks (GNNs)
Our results establish the theoretical guarantees on the optimality of the alignment for a two-layer GNN.
These guarantees are characterized by the graph shift operator being a function of the cross-covariance between the input and the output data.
arXiv Detail & Related papers (2023-10-16T19:54:21Z) - Learning Layer-wise Equivariances Automatically using Gradients [66.81218780702125]
Convolutions encode equivariance symmetries into neural networks leading to better generalisation performance.
symmetries provide fixed hard constraints on the functions a network can represent, need to be specified in advance, and can not be adapted.
Our goal is to allow flexible symmetry constraints that can automatically be learned from data using gradients.
arXiv Detail & Related papers (2023-10-09T20:22:43Z) - Geometrical aspects of lattice gauge equivariant convolutional neural
networks [0.0]
Lattice gauge equivariant convolutional neural networks (L-CNNs) are a framework for convolutional neural networks that can be applied to non-Abelian lattice gauge theories.
arXiv Detail & Related papers (2023-03-20T20:49:08Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
This work studies the design of neural networks that can process the weights or gradients of other neural networks.
We focus on the permutation symmetries that arise in the weights of deep feedforward networks because hidden layer neurons have no inherent order.
In our experiments, we find that permutation equivariant neural functionals are effective on a diverse set of tasks.
arXiv Detail & Related papers (2023-02-27T18:52:38Z) - Applications of Lattice Gauge Equivariant Neural Networks [0.0]
Lattice Gauge Equivariant Convolutional Neural Networks (L-CNNs)
L-CNNs can generalize better to differently sized lattices than traditional neural networks.
We present our progress on possible applications of L-CNNs to Wilson flow or continuous normalizing flow.
arXiv Detail & Related papers (2022-12-01T19:32:42Z) - Interrelation of equivariant Gaussian processes and convolutional neural
networks [77.34726150561087]
Currently there exists rather promising new trend in machine leaning (ML) based on the relationship between neural networks (NN) and Gaussian processes (GP)
In this work we establish a relationship between the many-channel limit for CNNs equivariant with respect to two-dimensional Euclidean group with vector-valued neuron activations and the corresponding independently introduced equivariant Gaussian processes (GP)
arXiv Detail & Related papers (2022-09-17T17:02:35Z) - Revisiting Transformation Invariant Geometric Deep Learning: Are Initial
Representations All You Need? [80.86819657126041]
We show that transformation-invariant and distance-preserving initial representations are sufficient to achieve transformation invariance.
Specifically, we realize transformation-invariant and distance-preserving initial point representations by modifying multi-dimensional scaling.
We prove that TinvNN can strictly guarantee transformation invariance, being general and flexible enough to be combined with the existing neural networks.
arXiv Detail & Related papers (2021-12-23T03:52:33Z) - Preserving gauge invariance in neural networks [0.0]
lattice gauge equivariant convolutional neural networks (L-CNNs)
We show how L-CNNs can represent a large class of gauge invariant and equivariant functions on the lattice.
arXiv Detail & Related papers (2021-12-21T14:08:12Z) - Encoding Involutory Invariance in Neural Networks [1.6371837018687636]
In certain situations, Neural Networks (NN) are trained upon data that obey underlying physical symmetries.
In this work, we explore a special kind of symmetry where functions are invariant with respect to involutory linear/affine transformations up to parity.
Numerical experiments indicate that the proposed models outperform baseline networks while respecting the imposed symmetry.
An adaption of our technique to convolutional NN classification tasks for datasets with inherent horizontal/vertical reflection symmetry has also been proposed.
arXiv Detail & Related papers (2021-06-07T16:07:15Z) - Lattice gauge equivariant convolutional neural networks [0.0]
We propose Lattice gauge equivariant Convolutional Neural Networks (L-CNNs) for generic machine learning applications.
We show that L-CNNs can learn and generalize gauge invariant quantities that traditional convolutional neural networks are incapable of finding.
arXiv Detail & Related papers (2020-12-23T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.