Applications of Lattice Gauge Equivariant Neural Networks
- URL: http://arxiv.org/abs/2212.00832v1
- Date: Thu, 1 Dec 2022 19:32:42 GMT
- Title: Applications of Lattice Gauge Equivariant Neural Networks
- Authors: Matteo Favoni, Andreas Ipp, David I. M\"uller
- Abstract summary: Lattice Gauge Equivariant Convolutional Neural Networks (L-CNNs)
L-CNNs can generalize better to differently sized lattices than traditional neural networks.
We present our progress on possible applications of L-CNNs to Wilson flow or continuous normalizing flow.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The introduction of relevant physical information into neural network
architectures has become a widely used and successful strategy for improving
their performance. In lattice gauge theories, such information can be
identified with gauge symmetries, which are incorporated into the network
layers of our recently proposed Lattice Gauge Equivariant Convolutional Neural
Networks (L-CNNs). L-CNNs can generalize better to differently sized lattices
than traditional neural networks and are by construction equivariant under
lattice gauge transformations. In these proceedings, we present our progress on
possible applications of L-CNNs to Wilson flow or continuous normalizing flow.
Our methods are based on neural ordinary differential equations which allow us
to modify link configurations in a gauge equivariant manner. For simplicity, we
focus on simple toy models to test these ideas in practice.
Related papers
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - From NeurODEs to AutoencODEs: a mean-field control framework for
width-varying Neural Networks [68.8204255655161]
We propose a new type of continuous-time control system, called AutoencODE, based on a controlled field that drives dynamics.
We show that many architectures can be recovered in regions where the loss function is locally convex.
arXiv Detail & Related papers (2023-07-05T13:26:17Z) - Geometrical aspects of lattice gauge equivariant convolutional neural
networks [0.0]
Lattice gauge equivariant convolutional neural networks (L-CNNs) are a framework for convolutional neural networks that can be applied to non-Abelian lattice gauge theories.
arXiv Detail & Related papers (2023-03-20T20:49:08Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
This work studies the design of neural networks that can process the weights or gradients of other neural networks.
We focus on the permutation symmetries that arise in the weights of deep feedforward networks because hidden layer neurons have no inherent order.
In our experiments, we find that permutation equivariant neural functionals are effective on a diverse set of tasks.
arXiv Detail & Related papers (2023-02-27T18:52:38Z) - Simple initialization and parametrization of sinusoidal networks via
their kernel bandwidth [92.25666446274188]
sinusoidal neural networks with activations have been proposed as an alternative to networks with traditional activation functions.
We first propose a simplified version of such sinusoidal neural networks, which allows both for easier practical implementation and simpler theoretical analysis.
We then analyze the behavior of these networks from the neural tangent kernel perspective and demonstrate that their kernel approximates a low-pass filter with an adjustable bandwidth.
arXiv Detail & Related papers (2022-11-26T07:41:48Z) - Preserving gauge invariance in neural networks [0.0]
lattice gauge equivariant convolutional neural networks (L-CNNs)
We show how L-CNNs can represent a large class of gauge invariant and equivariant functions on the lattice.
arXiv Detail & Related papers (2021-12-21T14:08:12Z) - Lattice gauge symmetry in neural networks [0.0]
We review a novel neural network architecture called lattice gauge equivariant convolutional neural networks (L-CNNs)
We discuss the concept of gauge equivariance which we use to explicitly construct a gauge equivariant convolutional layer and a bilinear layer.
The performance of L-CNNs and non-equivariant CNNs is compared using seemingly simple non-linear regression tasks.
arXiv Detail & Related papers (2021-11-08T11:20:11Z) - Lattice gauge equivariant convolutional neural networks [0.0]
We propose Lattice gauge equivariant Convolutional Neural Networks (L-CNNs) for generic machine learning applications.
We show that L-CNNs can learn and generalize gauge invariant quantities that traditional convolutional neural networks are incapable of finding.
arXiv Detail & Related papers (2020-12-23T19:00:01Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.