Variational Automatic Curriculum Learning for Sparse-Reward Cooperative
Multi-Agent Problems
- URL: http://arxiv.org/abs/2111.04613v1
- Date: Mon, 8 Nov 2021 16:35:08 GMT
- Title: Variational Automatic Curriculum Learning for Sparse-Reward Cooperative
Multi-Agent Problems
- Authors: Jiayu Chen, Yuanxin Zhang, Yuanfan Xu, Huimin Ma, Huazhong Yang,
Jiaming Song, Yu Wang, Yi Wu
- Abstract summary: We introduce a curriculum learning algorithm, Variational Automatic Curriculum Learning (VACL), for solving cooperative multi-agent reinforcement learning problems.
Our VACL algorithm implements this variational paradigm with two practical components, task expansion and entity progression.
Experiment results show that VACL solves a collection of sparse-reward problems with a large number of agents.
- Score: 42.973910399533054
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a curriculum learning algorithm, Variational Automatic
Curriculum Learning (VACL), for solving challenging goal-conditioned
cooperative multi-agent reinforcement learning problems. We motivate our
paradigm through a variational perspective, where the learning objective can be
decomposed into two terms: task learning on the current task distribution, and
curriculum update to a new task distribution. Local optimization over the
second term suggests that the curriculum should gradually expand the training
tasks from easy to hard. Our VACL algorithm implements this variational
paradigm with two practical components, task expansion and entity progression,
which produces training curricula over both the task configurations as well as
the number of entities in the task. Experiment results show that VACL solves a
collection of sparse-reward problems with a large number of agents.
Particularly, using a single desktop machine, VACL achieves 98% coverage rate
with 100 agents in the simple-spread benchmark and reproduces the ramp-use
behavior originally shown in OpenAI's hide-and-seek project. Our project
website is at https://sites.google.com/view/vacl-neurips-2021.
Related papers
- Towards Skilled Population Curriculum for Multi-Agent Reinforcement
Learning [42.540853953923495]
We introduce a novel automatic curriculum learning framework, Skilled Population Curriculum (SPC), which adapts curriculum learning to multi-agent coordination.
Specifically, we endow the student with population-invariant communication and a hierarchical skill set, allowing it to learn cooperation and behavior skills from distinct tasks with varying numbers of agents.
We also analyze the inherent non-stationarity of this multi-agent automatic curriculum teaching problem and provide a corresponding regret bound.
arXiv Detail & Related papers (2023-02-07T12:30:52Z) - Reinforcement Learning with Success Induced Task Prioritization [68.8204255655161]
We introduce Success Induced Task Prioritization (SITP), a framework for automatic curriculum learning.
The algorithm selects the order of tasks that provide the fastest learning for agents.
We demonstrate that SITP matches or surpasses the results of other curriculum design methods.
arXiv Detail & Related papers (2022-12-30T12:32:43Z) - NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision
Research [96.53307645791179]
We introduce the Never-Ending VIsual-classification Stream (NEVIS'22), a benchmark consisting of a stream of over 100 visual classification tasks.
Despite being limited to classification, the resulting stream has a rich diversity of tasks from OCR, to texture analysis, scene recognition, and so forth.
Overall, NEVIS'22 poses an unprecedented challenge for current sequential learning approaches due to the scale and diversity of tasks.
arXiv Detail & Related papers (2022-11-15T18:57:46Z) - CLUTR: Curriculum Learning via Unsupervised Task Representation Learning [130.79246770546413]
CLUTR is a novel curriculum learning algorithm that decouples task representation and curriculum learning into a two-stage optimization.
We show CLUTR outperforms PAIRED, a principled and popular UED method, in terms of generalization and sample efficiency in the challenging CarRacing and navigation environments.
arXiv Detail & Related papers (2022-10-19T01:45:29Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
We formulate it as a few-shot reinforcement learning problem where a task is characterized by a subtask graph.
Our multi-task subtask graph inferencer (MTSGI) first infers the common high-level task structure in terms of the subtask graph from the training tasks.
Our experiment results on 2D grid-world and complex web navigation domains show that the proposed method can learn and leverage the common underlying structure of the tasks for faster adaptation to the unseen tasks.
arXiv Detail & Related papers (2022-05-25T10:44:25Z) - Rectification-based Knowledge Retention for Continual Learning [49.1447478254131]
Deep learning models suffer from catastrophic forgetting when trained in an incremental learning setting.
We propose a novel approach to address the task incremental learning problem, which involves training a model on new tasks that arrive in an incremental manner.
Our approach can be used in both the zero-shot and non zero-shot task incremental learning settings.
arXiv Detail & Related papers (2021-03-30T18:11:30Z) - Meta Automatic Curriculum Learning [35.13646854355393]
We introduce the concept of Meta-ACL, and formalize it in the context of black-box RL learners.
We present AGAIN, a first instantiation of Meta-ACL, and showcase its benefits for curriculum generation over classical ACL.
arXiv Detail & Related papers (2020-11-16T14:56:42Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
We consider a problem known as multi-task learning, consisting of fitting a set of regression functions intended for solving different tasks.
In our novel formulation, we couple the parameters of these functions, so that they learn in their task specific domains while staying close to each other.
This facilitates cross-fertilization in which data collected across different domains help improving the learning performance at each other task.
arXiv Detail & Related papers (2020-10-24T21:35:57Z) - Curriculum Learning with Hindsight Experience Replay for Sequential
Object Manipulation Tasks [1.370633147306388]
We present an algorithm that combines curriculum learning with Hindsight Experience Replay (HER) to learn sequential object manipulation tasks.
The algorithm exploits the recurrent structure inherent in many object manipulation tasks and implements the entire learning process in the original simulation without adjusting it to each source task.
arXiv Detail & Related papers (2020-08-21T08:59:28Z) - Trying AGAIN instead of Trying Longer: Prior Learning for Automatic
Curriculum Learning [39.489869446313065]
A major challenge in the Deep RL (DRL) community is to train agents able to generalize over unseen situations.
We propose a two stage ACL approach where 1) a teacher algorithm first learns to train a DRL agent with a high-exploration curriculum, and then 2) distills learned priors from the first run to generate an "expert curriculum"
Besides demonstrating 50% improvements on average over the current state of the art, the objective of this work is to give a first example of a new research direction oriented towards refining ACL techniques over multiple learners.
arXiv Detail & Related papers (2020-04-07T07:30:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.