論文の概要: Deep Learning Approach for Aggressive Driving Behaviour Detection
- arxiv url: http://arxiv.org/abs/2111.04794v1
- Date: Mon, 8 Nov 2021 20:06:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-10 14:45:51.154322
- Title: Deep Learning Approach for Aggressive Driving Behaviour Detection
- Title(参考訳): 攻撃的運転行動検出のためのディープラーニングアプローチ
- Authors: Farid Talebloo, Emad A. Mohammed, Behrouz Far
- Abstract要約: この研究は、異なる状況(ラッシュ、精神的衝突、報復)のドライバーが攻撃的に運転し始めるときのタイムステップを特定する。
積極的運転の機会を発見するためには、運転行動を調べるために観察者(現実または仮想)が必要である。
スマートフォンのGPSセンサーを使って位置を検出し,運転者の運転行動を3分毎に分類することで,この問題を克服する。
- 参考スコア(独自算出の注目度): 1.933681537640272
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Driving behaviour is one of the primary causes of road crashes and accidents,
and these can be decreased by identifying and minimizing aggressive driving
behaviour. This study identifies the timesteps when a driver in different
circumstances (rush, mental conflicts, reprisal) begins to drive aggressively.
An observer (real or virtual) is needed to examine driving behaviour to
discover aggressive driving occasions; we overcome this problem by using a
smartphone's GPS sensor to detect locations and classify drivers' driving
behaviour every three minutes. To detect timeseries patterns in our dataset, we
employ RNN (GRU, LSTM) algorithms to identify patterns during the driving
course. The algorithm is independent of road, vehicle, position, or driver
characteristics. We conclude that three minutes (or more) of driving (120
seconds of GPS data) is sufficient to identify driver behaviour. The results
show high accuracy and a high F1 score.
- Abstract(参考訳): 運転行動は、道路事故や事故の主な原因の1つであり、攻撃的な運転行動を特定し、最小化することでこれらを減らすことができる。
この研究は、異なる状況(ラッシュ、精神的衝突、報復)のドライバーが攻撃的に運転し始めるときのタイムステップを特定する。
私たちはスマートフォンのgpsセンサーを使って位置を検出し、ドライバーの運転行動を3分ごとに分類することで、この問題を克服しました。
我々のデータセットの時系列パターンを検出するために、運転中のパターンを特定するためにRNNアルゴリズム(GRU, LSTM)を用いる。
アルゴリズムは、道路、車両、位置、あるいは運転者の特性とは独立している。
3分間(またはそれ以上)の運転(120秒のGPSデータ)は、運転者の行動を特定するのに十分である。
その結果,高い精度とf1スコアが得られた。
関連論文リスト
- Detecting Socially Abnormal Highway Driving Behaviors via Recurrent
Graph Attention Networks [4.526932450666445]
本研究は,ハイウェイビデオ監視システムによる軌跡から異常運転行動を検出することに焦点を当てる。
本稿では,周囲の車上での走行動作を文脈的に把握できるリカレントグラフ注意ネットワークを用いたオートエンコーダを提案する。
私たちのモデルは何千もの車で大きな高速道路にスケーラブルです。
論文 参考訳(メタデータ) (2023-04-23T01:32:47Z) - Unsupervised Driving Event Discovery Based on Vehicle CAN-data [62.997667081978825]
本研究は,車両CANデータのクラスタリングとセグメンテーションを同時に行うことで,一般的な運転イベントを教師なしで識別する手法である。
我々は、実際のTesla Model 3車載CANデータと、異なる運転イベントをアノテートした2時間の運転セッションのデータセットを用いて、アプローチを評価した。
論文 参考訳(メタデータ) (2023-01-12T13:10:47Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
非客観的運転経験はモデル化が難しい。
本稿では,運転経験蓄積過程をモデル化するFeedBack Loop Network (FBLNet)を提案する。
インクリメンタルな知識の指導のもと、私たちのモデルは入力画像から抽出されたCNN特徴とトランスフォーマー特徴を融合し、ドライバーの注意を予測します。
論文 参考訳(メタデータ) (2022-12-05T08:25:09Z) - Modelling and Detection of Driver's Fatigue using Ontology [60.090278944561184]
道路事故は世界8大死因である。
様々な要因がドライバーの疲労の原因となっている。
ドライバの疲労検出に関するオントロジー知識とルールをインテリジェントシステムに統合する必要がある。
論文 参考訳(メタデータ) (2022-08-31T08:42:28Z) - Unsupervised Driving Behavior Analysis using Representation Learning and
Exploiting Group-based Training [15.355045011160804]
運転行動監視は、道路安全の管理と交通事故のリスク低減に重要な役割を果たしている。
現在の研究は、駆動パターンの変動を捉えて、堅牢な駆動パターン解析を行う。
時系列の圧縮表現を学習することで一貫した群を形成する。
論文 参考訳(メタデータ) (2022-05-12T10:27:47Z) - Driving Anomaly Detection Using Conditional Generative Adversarial
Network [26.45460503638333]
本研究では,条件付き生成逆数ネットワーク(GAN)を用いた運転異常の定量化手法を提案する。
この手法は、事前に観測された信号にモデルを条件付けすることで、今後の運転シナリオを予測する。
結果は知覚的評価によって検証され、アノテータは高い異常スコアで検出されたビデオのリスクと親しみやすさを評価するよう依頼される。
論文 参考訳(メタデータ) (2022-03-15T22:10:01Z) - Driver2vec: Driver Identification from Automotive Data [44.84876493736275]
Driver2vecは、センサーデータの短い10秒間隔からドライバを正確に識別することができる。
Driver2vecは、Nervtechが提供する51人のドライバーのデータセットでトレーニングされている。
論文 参考訳(メタデータ) (2021-02-10T03:09:13Z) - Driver Anomaly Detection: A Dataset and Contrastive Learning Approach [17.020790792750457]
本稿では,通常の運転と異常運転を区別する指標を学習するための対照的な学習手法を提案する。
本手法はテストセットの0.9673 AUCに到達し,異常検出タスクに対する対照的な学習手法の有効性を実証した。
論文 参考訳(メタデータ) (2020-09-30T13:23:21Z) - Learning Accurate and Human-Like Driving using Semantic Maps and
Attention [152.48143666881418]
本稿では,より正確かつ人間らしく運転できるエンド・ツー・エンド駆動モデルについて検討する。
HERE Technologiesのセマンティックマップとビジュアルマップを活用し、既存のDrive360データセットを拡張します。
私たちのモデルは、実世界の運転データ60時間3000kmのDrive360+HEREデータセットでトレーニングされ、評価されています。
論文 参考訳(メタデータ) (2020-07-10T22:25:27Z) - TripMD: Driving patterns investigation via Motif Analysis [3.42658286826597]
TripMDは、センサ記録から最も関連性の高い駆動パターンを抽出するシステムである。
本システムでは,1人の運転者から多数の運転パターンを抽出できることを示す。
論文 参考訳(メタデータ) (2020-07-07T18:34:31Z) - Driver Intention Anticipation Based on In-Cabin and Driving Scene
Monitoring [52.557003792696484]
本稿では,車内映像と交通シーン映像の両方に基づいて運転者の意図を検出する枠組みを提案する。
本フレームワークは,83.98%,F1スコア84.3%の精度で予測を行う。
論文 参考訳(メタデータ) (2020-06-20T11:56:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。