User Centered Design (VI): Human Factors Approaches for Intelligent
Human-Computer Interaction
- URL: http://arxiv.org/abs/2111.04880v1
- Date: Mon, 8 Nov 2021 23:48:40 GMT
- Title: User Centered Design (VI): Human Factors Approaches for Intelligent
Human-Computer Interaction
- Authors: Wei Xu
- Abstract summary: This paper analyzes the human factors characteristics of intelligent human-computer interaction (iHCI)
It proposes a new human factors framework for iHCI based on the theories of joint cognitive systems, situation awareness, and intelligent agents.
- Score: 9.7988110067549
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Starting from the design philosophy of "user-centered design", this paper
analyzes the human factors characteristics of intelligent human-computer
interaction (iHCI) and proposes a concept of "user-oriented iHCI". It further
proposes a new human factors framework for iHCI based on the theories of joint
cognitive systems, situation awareness, and intelligent agents. With the help
of the new concept and framework, the paper analyzes the human factors issues
in the ecosystem of autonomous vehicle co-driving and layouts future research
agenda. Finally, the paper analyzes the two important research areas in iHCI
(i.e., user intention recognition, human-computer collaboration) and points out
the focus of human factors research in the future.
Related papers
- Aligning Generalisation Between Humans and Machines [74.120848518198]
Recent advances in AI have resulted in technology that can support humans in scientific discovery and decision support but may also disrupt democracies and target individuals.
The responsible use of AI increasingly shows the need for human-AI teaming.
A crucial yet often overlooked aspect of these interactions is the different ways in which humans and machines generalise.
arXiv Detail & Related papers (2024-11-23T18:36:07Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
Recent advancements in AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment.
The lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment.
We introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML)
arXiv Detail & Related papers (2024-06-13T16:03:25Z) - Explainable Interface for Human-Autonomy Teaming: A Survey [12.26178592621411]
This paper conducts a thoughtful study on the underexplored domain of Explainable Interface (EI) in HAT systems.
We explore the design, development, and evaluation of EI within XAI-enhanced HAT systems.
We contribute to a novel framework for EI, addressing the unique challenges in HAT.
arXiv Detail & Related papers (2024-05-04T06:35:38Z) - Towards Human-centered Proactive Conversational Agents [60.57226361075793]
The distinction between a proactive and a reactive system lies in the proactive system's initiative-taking nature.
We establish a new taxonomy concerning three key dimensions of human-centered PCAs, namely Intelligence, Adaptivity, and Civility.
arXiv Detail & Related papers (2024-04-19T07:14:31Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AI is a process in which humans and AI algorithms continuously influence each other.
This paper introduces Coevolution AI as the cornerstone for a new field of study at the intersection between AI and complexity science.
arXiv Detail & Related papers (2023-06-23T18:10:54Z) - Mutual Theory of Mind for Human-AI Communication [5.969858080492586]
New developments are enabling AI systems to perceive, recognize, and respond with social cues based on humans' explicit or implicit behavioral and verbal cues.
These AI systems are currently serving as matchmakers on dating platforms, assisting student learning as teaching assistants, and enhancing productivity as work partners.
We propose the Mutual Theory of Mind (MToM) framework, inspired by our capability of ToM in human-human communications, to guide this new generation of HAI research.
arXiv Detail & Related papers (2022-10-07T22:46:04Z) - On some Foundational Aspects of Human-Centered Artificial Intelligence [52.03866242565846]
There is no clear definition of what is meant by Human Centered Artificial Intelligence.
This paper introduces the term HCAI agent to refer to any physical or software computational agent equipped with AI components.
We see the notion of HCAI agent, together with its components and functions, as a way to bridge the technical and non-technical discussions on human-centered AI.
arXiv Detail & Related papers (2021-12-29T09:58:59Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z) - Thinking Fast and Slow in AI [38.8581204791644]
This paper proposes a research direction to advance AI which draws inspiration from cognitive theories of human decision making.
The premise is that if we gain insights about the causes of some human capabilities that are still lacking in AI, we may obtain similar capabilities in an AI system.
arXiv Detail & Related papers (2020-10-12T20:10:05Z) - Towards hybrid primary intersubjectivity: a neural robotics library for
human science [4.232614032390374]
We study primary intersubjectivity as a second person perspective experience characterized by predictive engagement.
We propose an open-source methodology named textitneural robotics library (NRL) for experimental human-robot interaction.
We discuss some ways human-robot (hybrid) intersubjectivity can contribute to human science research.
arXiv Detail & Related papers (2020-06-29T11:35:46Z) - Human-centered Explainable AI: Towards a Reflective Sociotechnical
Approach [18.14698948294366]
We introduce Human-centered Explainable AI (HCXAI) as an approach that puts the human at the center of technology design.
It develops a holistic understanding of "who" the human is by considering the interplay of values, interpersonal dynamics, and the socially situated nature of AI systems.
arXiv Detail & Related papers (2020-02-04T02:30:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.