Robust Estimation for Random Graphs
- URL: http://arxiv.org/abs/2111.05320v1
- Date: Tue, 9 Nov 2021 18:43:25 GMT
- Title: Robust Estimation for Random Graphs
- Authors: Jayadev Acharya, Ayush Jain, Gautam Kamath, Ananda Theertha Suresh,
Huanyu Zhang
- Abstract summary: We study the problem of robustly estimating the parameter $p$ of an ErdHos-R'enyi random graph on $n$ nodes.
We give an inefficient algorithm with similar accuracy for all $gamma 1/2$, the information-theoretic limit.
- Score: 47.07886511972046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of robustly estimating the parameter $p$ of an
Erd\H{o}s-R\'enyi random graph on $n$ nodes, where a $\gamma$ fraction of nodes
may be adversarially corrupted. After showing the deficiencies of canonical
estimators, we design a computationally-efficient spectral algorithm which
estimates $p$ up to accuracy $\tilde O(\sqrt{p(1-p)}/n + \gamma\sqrt{p(1-p)}
/\sqrt{n}+ \gamma/n)$ for $\gamma < 1/60$. Furthermore, we give an inefficient
algorithm with similar accuracy for all $\gamma <1/2$, the
information-theoretic limit. Finally, we prove a nearly-matching statistical
lower bound, showing that the error of our algorithms is optimal up to
logarithmic factors.
Related papers
- Robust Sparse Estimation for Gaussians with Optimal Error under Huber Contamination [42.526664955704746]
We study sparse estimation tasks in Huber's contamination model with a focus on mean estimation, PCA, and linear regression.
For each of these tasks, we give the first sample and computationally efficient robust estimators with optimal error guarantees.
At the technical level, we develop a novel multidimensional filtering method in the sparse regime that may find other applications.
arXiv Detail & Related papers (2024-03-15T15:51:27Z) - Near-Optimal Bounds for Learning Gaussian Halfspaces with Random
Classification Noise [50.64137465792738]
We show that any efficient SQ algorithm for the problem requires sample complexity at least $Omega(d1/2/(maxp, epsilon)2)$.
Our lower bound suggests that this quadratic dependence on $1/epsilon$ is inherent for efficient algorithms.
arXiv Detail & Related papers (2023-07-13T18:59:28Z) - Moments, Random Walks, and Limits for Spectrum Approximation [40.43008834125277]
We show that there are distributions on $[-1,1]$ that cannot be approximated to accuracy $epsilon$ in Wasserstein-1 distance.
No algorithm can compute an $epsilon$-accurate approximation to the spectrum of a normalized graph adjacency matrix with constant probability.
arXiv Detail & Related papers (2023-07-02T05:03:38Z) - Detection of Dense Subhypergraphs by Low-Degree Polynomials [72.4451045270967]
Detection of a planted dense subgraph in a random graph is a fundamental statistical and computational problem.
We consider detecting the presence of a planted $Gr(ngamma, n-alpha)$ subhypergraph in a $Gr(n, n-beta) hypergraph.
Our results are already new in the graph case $r=2$, as we consider the subtle log-density regime where hardness based on average-case reductions is not known.
arXiv Detail & Related papers (2023-04-17T10:38:08Z) - Tight Bounds for $\gamma$-Regret via the Decision-Estimation Coefficient [88.86699022151598]
We give a statistical characterization of the $gamma$-regret for arbitrary structured bandit problems.
The $gamma$-regret emerges in structured bandit problems over a function class $mathcalF$ where finding an exact optimum of $f in mathcalF$ is intractable.
arXiv Detail & Related papers (2023-03-06T17:54:33Z) - Globally Optimal Algorithms for Fixed-Budget Best Arm Identification [16.500749121196986]
We characterize the optimal rate as a result of global optimization over all possible parameters.
We show that this rate is indeed achievable by introducing a conceptual algorithm called delayed optimal tracking (DOT)
arXiv Detail & Related papers (2022-06-09T17:42:19Z) - Robust Sparse Mean Estimation via Sum of Squares [42.526664955704746]
We study the problem of high-dimensional sparse mean estimation in the presence of an $epsilon$-fraction of adversarial outliers.
Our algorithms follow the Sum-of-Squares based, to algorithms approach.
arXiv Detail & Related papers (2022-06-07T16:49:54Z) - Structure Learning in Graphical Models from Indirect Observations [17.521712510832558]
This paper considers learning of the graphical structure of a $p$-dimensional random vector $X in Rp$ using both parametric and non-parametric methods.
Under mild conditions, we show that our graph-structure estimator can obtain the correct structure.
arXiv Detail & Related papers (2022-05-06T19:24:44Z) - Gaussian Process Bandit Optimization with Few Batches [49.896920704012395]
We introduce a batch algorithm inspired by finite-arm bandit algorithms.
We show that it achieves the cumulative regret upper bound $Oast(sqrtTgamma_T)$ using $O(loglog T)$ batches within time horizon $T$.
In addition, we propose a modified version of our algorithm, and characterize how the regret is impacted by the number of batches.
arXiv Detail & Related papers (2021-10-15T00:54:04Z) - A Randomized Algorithm to Reduce the Support of Discrete Measures [79.55586575988292]
Given a discrete probability measure supported on $N$ atoms and a set of $n$ real-valued functions, there exists a probability measure that is supported on a subset of $n+1$ of the original $N$ atoms.
We give a simple geometric characterization of barycenters via negative cones and derive a randomized algorithm that computes this new measure by "greedy geometric sampling"
We then study its properties, and benchmark it on synthetic and real-world data to show that it can be very beneficial in the $Ngg n$ regime.
arXiv Detail & Related papers (2020-06-02T16:38:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.