Improved Robust Estimation for Erdős-Rényi Graphs: The Sparse Regime and Optimal Breakdown Point
- URL: http://arxiv.org/abs/2503.03923v1
- Date: Wed, 05 Mar 2025 21:45:17 GMT
- Title: Improved Robust Estimation for Erdős-Rényi Graphs: The Sparse Regime and Optimal Breakdown Point
- Authors: Hongjie Chen, Jingqiu Ding, Yiding Hua, Stefan Tiegel,
- Abstract summary: We study the problem of robustly estimating the edge density of ErdHos-R'enyi random graphs $G(n, dcirc/n)$.<n>Our algorithm is based on the sum-of-squares hierarchy.
- Score: 3.793609515750114
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of robustly estimating the edge density of Erd\H{o}s-R\'enyi random graphs $G(n, d^\circ/n)$ when an adversary can arbitrarily add or remove edges incident to an $\eta$-fraction of the nodes. We develop the first polynomial-time algorithm for this problem that estimates $d^\circ$ up to an additive error $O([\sqrt{\log(n) / n} + \eta\sqrt{\log(1/\eta)} ] \cdot \sqrt{d^\circ} + \eta \log(1/\eta))$. Our error guarantee matches information-theoretic lower bounds up to factors of $\log(1/\eta)$. Moreover, our estimator works for all $d^\circ \geq \Omega(1)$ and achieves optimal breakdown point $\eta = 1/2$. Previous algorithms [AJK+22, CDHS24], including inefficient ones, incur significantly suboptimal errors. Furthermore, even admitting suboptimal error guarantees, only inefficient algorithms achieve optimal breakdown point. Our algorithm is based on the sum-of-squares (SoS) hierarchy. A key ingredient is to construct constant-degree SoS certificates for concentration of the number of edges incident to small sets in $G(n, d^\circ/n)$. Crucially, we show that these certificates also exist in the sparse regime, when $d^\circ = o(\log n)$, a regime in which the performance of previous algorithms was significantly suboptimal.
Related papers
- Inverting the Leverage Score Gradient: An Efficient Approximate Newton Method [10.742859956268655]
This paper aims to recover the intrinsic model parameters given the leverage scores gradient.
We specifically scrutinize the inversion of the leverage score gradient, denoted as $g(x)$.
arXiv Detail & Related papers (2024-08-21T01:39:42Z) - Perturb-and-Project: Differentially Private Similarities and Marginals [73.98880839337873]
We revisit the input perturbations framework for differential privacy where noise is added to the input $Ain mathcalS$.
We first design novel efficient algorithms to privately release pair-wise cosine similarities.
We derive a novel algorithm to compute $k$-way marginal queries over $n$ features.
arXiv Detail & Related papers (2024-06-07T12:07:16Z) - Differentially Private Stochastic Gradient Descent with Low-Noise [49.981789906200035]
Modern machine learning algorithms aim to extract fine-grained information from data to provide accurate predictions, which often conflicts with the goal of privacy protection.
This paper addresses the practical and theoretical importance of developing privacy-preserving machine learning algorithms that ensure good performance while preserving privacy.
arXiv Detail & Related papers (2022-09-09T08:54:13Z) - List-Decodable Sparse Mean Estimation via Difference-of-Pairs Filtering [42.526664955704746]
We develop a novel, conceptually simpler technique for list-decodable sparse mean estimation.
In particular, for distributions with "certifiably bounded" $t-th moments in $k$-sparse directions, our algorithm achieves error of $(1/alpha)O (1/t)$ with sample complexity $m = (klog(n))O(t)/alpha(mnt)$.
For the special case of Gaussian inliers, our algorithm achieves the optimal error guarantee of $Theta (sqrtlog
arXiv Detail & Related papers (2022-06-10T17:38:18Z) - Sketching Algorithms and Lower Bounds for Ridge Regression [65.0720777731368]
We give a sketching-based iterative algorithm that computes $1+varepsilon$ approximate solutions for the ridge regression problem.
We also show that this algorithm can be used to give faster algorithms for kernel ridge regression.
arXiv Detail & Related papers (2022-04-13T22:18:47Z) - Nearly Optimal Policy Optimization with Stable at Any Time Guarantee [53.155554415415445]
Policy-based method in citetshani 2020optimistic is only $tildeO(sqrtSAH3K + sqrtAH4K)$ where $S$ is the number of states, $A$ is the number of actions, $H$ is the horizon, and $K$ is the number of episodes, and there is a $sqrtSH$ gap compared with the information theoretic lower bound $tildeOmega(sqrtSAH
arXiv Detail & Related papers (2021-12-21T01:54:17Z) - Improved No-Regret Algorithms for Stochastic Shortest Path with Linear
MDP [31.62899359543925]
We introduce two new no-regret algorithms for the shortest path (SSP) problem with a linear MDP.
Our first algorithm is computationally efficient and achieves a regret bound $widetildeOleft(sqrtd3B_star2T_star Kright)$.
Our second algorithm is computationally inefficient but achieves the first "horizon-free" regret bound $widetildeO(d3.5B_starsqrtK)$ with no dependency on $T_star
arXiv Detail & Related papers (2021-12-18T06:47:31Z) - Robust Estimation for Random Graphs [47.07886511972046]
We study the problem of robustly estimating the parameter $p$ of an ErdHos-R'enyi random graph on $n$ nodes.
We give an inefficient algorithm with similar accuracy for all $gamma 1/2$, the information-theoretic limit.
arXiv Detail & Related papers (2021-11-09T18:43:25Z) - Online Sub-Sampling for Reinforcement Learning with General Function
Approximation [111.01990889581243]
In this paper, we establish an efficient online sub-sampling framework that measures the information gain of data points collected by an RL algorithm.
For a value-based method with complexity-bounded function class, we show that the policy only needs to be updated for $proptooperatornamepolylog(K)$ times.
In contrast to existing approaches that update the policy for at least $Omega(K)$ times, our approach drastically reduces the number of optimization calls in solving for a policy.
arXiv Detail & Related papers (2021-06-14T07:36:25Z) - Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization [51.23789922123412]
We study online learning with bandit feedback (i.e. learner has access to only zeroth-order oracle) where cost/reward functions admit a "pseudo-1d" structure.
We show a lower bound of $min(sqrtdT, T3/4)$ for the regret of any algorithm, where $T$ is the number of rounds.
We propose a new algorithm sbcalg that combines randomized online gradient descent with a kernelized exponential weights method to exploit the pseudo-1d structure effectively.
arXiv Detail & Related papers (2021-02-15T08:16:51Z) - List-Decodable Mean Estimation in Nearly-PCA Time [50.79691056481693]
We study the fundamental task of list-decodable mean estimation in high dimensions.
Our algorithm runs in time $widetildeO(ndk)$ for all $k = O(sqrtd) cup Omega(d)$, where $n$ is the size of the dataset.
A variant of our algorithm has runtime $widetildeO(ndk)$ for all $k$, at the expense of an $O(sqrtlog k)$ factor in the recovery guarantee
arXiv Detail & Related papers (2020-11-19T17:21:37Z) - Robust estimation via generalized quasi-gradients [28.292300073453877]
We show why many recently proposed robust estimation problems are efficiently solvable.
We identify the existence of "generalized quasi-gradients"
We show that generalized quasi-gradients exist and construct efficient algorithms.
arXiv Detail & Related papers (2020-05-28T15:14:33Z) - Maximizing Determinants under Matroid Constraints [69.25768526213689]
We study the problem of finding a basis $S$ of $M$ such that $det(sum_i in Sv_i v_i v_itop)$ is maximized.
This problem appears in a diverse set of areas such as experimental design, fair allocation of goods, network design, and machine learning.
arXiv Detail & Related papers (2020-04-16T19:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.