Reflection-Based Adiabatic State Preparation
- URL: http://arxiv.org/abs/2111.05461v1
- Date: Wed, 10 Nov 2021 00:03:00 GMT
- Title: Reflection-Based Adiabatic State Preparation
- Authors: Jessica Lemieux, Artur Scherer and Pooya Ronagh
- Abstract summary: Our algorithm deploys a sequence of reflections determined from eigenspaces of instantaneous Hamiltonians defined along an adiabatic schedule.
We provide numerical evidence suggesting that, for search problems, our algorithm can find a solution faster, on average, than Grover's search.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a circuit-model quantum algorithm for eigenpath traversal that is
based on a combination of concepts from Grover's search and adiabatic quantum
computation. Our algorithm deploys a sequence of reflections determined from
eigenspaces of instantaneous Hamiltonians defined along an adiabatic schedule
in order to prepare a ground state of a target problem Hamiltonian. We provide
numerical evidence suggesting that, for combinatorial search problems, our
algorithm can find a solution faster, on average, than Grover's search. We
demonstrate our findings by applying both algorithms to solving the NP-hard
MAX-2SAT problem.
Related papers
- A quantum algorithm for advection-diffusion equation by a probabilistic imaginary-time evolution operator [0.0]
We propose a quantum algorithm for solving the linear advection-diffusion equation by employing a new approximate probabilistic imaginary-time evolution (PITE) operator.
We construct the explicit quantum circuit for realizing the imaginary-time evolution of the Hamiltonian coming from the advection-diffusion equation.
Our algorithm gives comparable result to the Harrow-Hassidim-Lloyd (HHL) algorithm with similar gate complexity, while we need much less ancillary qubits.
arXiv Detail & Related papers (2024-09-27T08:56:21Z) - An Analysis of Quantum Annealing Algorithms for Solving the Maximum Clique Problem [49.1574468325115]
We analyse the ability of quantum D-Wave annealers to find the maximum clique on a graph, expressed as a QUBO problem.
We propose a decomposition algorithm for the complementary maximum independent set problem, and a graph generation algorithm to control the number of nodes, the number of cliques, the density, the connectivity indices and the ratio of the solution size to the number of other nodes.
arXiv Detail & Related papers (2024-06-11T04:40:05Z) - Quantum algorithms for Hopcroft's problem [45.45456673484445]
We study quantum algorithms for Hopcroft's problem which is a fundamental problem in computational geometry.
The classical complexity of this problem is well-studied, with the best known algorithm running in $O(n4/3)$ time.
Our results are two different quantum algorithms with time complexity $widetilde O(n5/6)$.
arXiv Detail & Related papers (2024-05-02T10:29:06Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - A Universal Quantum Algorithm for Weighted Maximum Cut and Ising
Problems [0.0]
We propose a hybrid quantum-classical algorithm to compute approximate solutions of binary problems.
We employ a shallow-depth quantum circuit to implement a unitary and Hermitian operator that block-encodes the weighted maximum cut or the Ising Hamiltonian.
Measuring the expectation of this operator on a variational quantum state yields the variational energy of the quantum system.
arXiv Detail & Related papers (2023-06-10T23:28:13Z) - Grover Search Inspired Alternating Operator Ansatz of Quantum
Approximate Optimization Algorithm for Search Problems [0.913755431537592]
We use the mapping between two computation frameworks, Adiabatic Grover Search (AGS) and Adiabatic Quantum Computing (AQC)
We then apply Trotterization on the schedule-dependent Hamiltonian of AGS to obtain the values of variational parameters in the Quantum Approximate Optimization Algorithm (QAOA) framework.
arXiv Detail & Related papers (2022-04-21T01:41:36Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
The famous least squares Monte Carlo (LSM) algorithm combines linear least square regression with Monte Carlo simulation to approximately solve problems in optimal stopping theory.
We propose a quantum LSM based on quantum access to a process, on quantum circuits for computing the optimal stopping times, and on quantum techniques for Monte Carlo.
arXiv Detail & Related papers (2021-11-30T12:21:41Z) - On Applying the Lackadaisical Quantum Walk Algorithm to Search for
Multiple Solutions on Grids [63.75363908696257]
The lackadaisical quantum walk is an algorithm developed to search graph structures whose vertices have a self-loop of weight $l$.
This paper addresses several issues related to applying the lackadaisical quantum walk to search for multiple solutions on grids successfully.
arXiv Detail & Related papers (2021-06-11T09:43:09Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Quantum Search with Prior Knowledge [15.384459603233978]
We propose a new generalization of Grover's search algorithm which performs better than the standard Grover algorithm in average under this setting.
We prove that our new algorithm achieves the optimal expected success probability of finding the solution if the number of queries is fixed.
arXiv Detail & Related papers (2020-09-18T09:50:33Z) - Number Partitioning with Grover's Algorithm in Central Spin Systems [0.0]
We propose a Grover search for solutions to a class of NP-complete decision problems known as subset sum problems.
Each problem instance is encoded in the couplings of a set of qubits to a central spin or boson, which enables a realization of the oracle without knowledge of the solution.
arXiv Detail & Related papers (2020-09-11T17:31:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.