An Analysis of Quantum Annealing Algorithms for Solving the Maximum Clique Problem
- URL: http://arxiv.org/abs/2406.07587v1
- Date: Tue, 11 Jun 2024 04:40:05 GMT
- Title: An Analysis of Quantum Annealing Algorithms for Solving the Maximum Clique Problem
- Authors: Alessandro Gherardi, Alberto Leporati,
- Abstract summary: We analyse the ability of quantum D-Wave annealers to find the maximum clique on a graph, expressed as a QUBO problem.
We propose a decomposition algorithm for the complementary maximum independent set problem, and a graph generation algorithm to control the number of nodes, the number of cliques, the density, the connectivity indices and the ratio of the solution size to the number of other nodes.
- Score: 49.1574468325115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum annealers can be used to solve many (possibly NP-hard) combinatorial optimization problems, by formulating them as quadratic unconstrained binary optimization (QUBO) problems or, equivalently, using the Ising formulation. In this paper we analyse the ability of quantum D-Wave annealers to find the maximum clique on a graph, expressed as a QUBO problem. Due to the embedding limit of 164 nodes imposed by the anneler, we conducted a study on graph decomposition to enable instance embedding. We thus propose a decomposition algorithm for the complementary maximum independent set problem, and a graph generation algorithm to control the number of nodes, the number of cliques, the density, the connectivity indices and the ratio of the solution size to the number of other nodes. We then statistically analysed how these variables affect the quality of the solutions found by the quantum annealer. The results of our investigation include recommendations on ratio and density limits not to be exceeded, as well as a series of precautions and a priori analyses to be carried out in order to maximise the probability of obtaining a solution close to the optimum.
Related papers
- Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Sample Complexity for Quadratic Bandits: Hessian Dependent Bounds and
Optimal Algorithms [64.10576998630981]
We show the first tight characterization of the optimal Hessian-dependent sample complexity.
A Hessian-independent algorithm universally achieves the optimal sample complexities for all Hessian instances.
The optimal sample complexities achieved by our algorithm remain valid for heavy-tailed noise distributions.
arXiv Detail & Related papers (2023-06-21T17:03:22Z) - Analyzing Prospects for Quantum Advantage in Topological Data Analysis [35.423446067065576]
We analyze and optimize an improved quantum algorithm for topological data analysis.
We show that super-quadratic quantum speedups are only possible when targeting a multiplicative error approximation.
We argue that quantum circuits with tens of billions of Toffoli can solve seemingly classically intractable instances.
arXiv Detail & Related papers (2022-09-27T17:56:15Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - An entanglement perspective on the quantum approximate optimization
algorithm [0.0]
We study the entanglement growth and spread resulting from randomized and optimized QAOA circuits.
We also investigate the entanglement spectrum in connection with random matrix theory.
arXiv Detail & Related papers (2022-06-14T17:37:44Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
Quantum approximate optimization algorithms (QAOAs) utilize the power of quantum machines and inherit the spirit of adiabatic evolution.
We propose QAOA-in-QAOA ($textQAOA2$) to solve arbitrary large-scale MaxCut problems using quantum machines.
Our method can be seamlessly embedded into other advanced strategies to enhance the capability of QAOAs in large-scale optimization problems.
arXiv Detail & Related papers (2022-05-24T03:49:10Z) - A Hybrid Quantum-Classical Heuristic to solve large-scale Integer Linear
Programs [0.4925222726301578]
We present a method that integrates any quantum algorithm capable of finding solutions to integer linear programs into the Branch-and-Price algorithm.
The role of the quantum algorithm is to find integer solutions to subproblems appearing in Branch-and-Price.
arXiv Detail & Related papers (2021-03-29T08:59:26Z) - Empirical performance bounds for quantum approximate optimization [0.27998963147546135]
Quantifying performance bounds provides insight into when QAOA may be viable for solving real-world applications.
We find QAOA exceeds the Goemans-Williamson approximation ratio bound for most graphs.
The resulting data set is presented as a benchmark for establishing empirical bounds on QAOA performance.
arXiv Detail & Related papers (2021-02-12T23:12:09Z) - Decomposition algorithms for solving NP-hard problems on a quantum
annealer [0.0]
NP-hard problems have applications in computational chemistry, biochemistry and computer network security.
Adaabatic quantum annealers can search for the optimum value of such NP-hard optimization problems, given the problem can be embedded on their hardware.
This paper studies a general framework for a decomposition algorithm for NP-hard graph problems.
arXiv Detail & Related papers (2020-09-10T15:59:06Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.