Giant Atoms in a Synthetic Frequency Dimension
- URL: http://arxiv.org/abs/2111.05584v2
- Date: Fri, 3 Jun 2022 14:41:05 GMT
- Title: Giant Atoms in a Synthetic Frequency Dimension
- Authors: Lei Du, Yan Zhang, Jin-Hui Wu, A. F. Kockum, and Yong Li
- Abstract summary: We propose a feasible scheme for constructing giant atoms in a synthetic frequency dimension with, e.g., a dynamically modulated superconducting resonator and a tailored three-level artificial atom.
Both analytical and numerical calculations show good agreement between our scheme and real-space two-level giant atoms.
- Score: 7.9675459910390805
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Giant atoms that interact with real-space waveguides at multiple spatial
points have attracted extensive attention due to their unique interference
effects. Here we propose a feasible scheme for constructing giant atoms in a
synthetic frequency dimension with, e.g., a dynamically modulated
superconducting resonator and a tailored three-level artificial atom. Both
analytical and numerical calculations show good agreement between our scheme
and real-space two-level giant atoms. In particular, the symmetry of the model
in momentum space can be broken by tuning the phase of the external field
applied on the atom, enabling chiral interactions between the atom and the
frequency lattice. We further demonstrate the possibility of simulating
cascaded interaction and directional excitation transfer in the frequency
dimension by directly extending our model to involve more such effective giant
atoms.
Related papers
- Observation of string breaking on a (2 + 1)D Rydberg quantum simulator [59.63568901264298]
We report the observation of string breaking in synthetic quantum matter using a programmable quantum simulator.
Our work paves a way to explore phenomena in high-energy physics using programmable quantum simulators.
arXiv Detail & Related papers (2024-10-21T22:33:16Z) - Interaction and entanglement engineering in driven giant atoms setup with coupled resonator waveguide [7.146627213939164]
We investigate the coherent interactions mediated by the coupled resonator waveguide between two types of giant atoms.
We find that the effective coupling and collective dissipation can be controlled on demand by adjusting the configuration of the giant atoms.
arXiv Detail & Related papers (2024-06-13T05:55:13Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Interaction between giant atoms in a one-dimensional structured
environment [0.0]
We study the interaction between two giant atoms mediated by a structured waveguide.
We show decoherence-free interaction is possible for different atom-cavity detunings.
Results may find applications in quantum simulation and quantum gate implementation.
arXiv Detail & Related papers (2022-08-08T12:47:09Z) - A giant atom with modulated transition frequency [9.338020727160595]
We study the spontaneous emission dynamics of a two-level giant atom with dynamically modulated transition frequency.
The results in this paper have potential applications in quantum information processing and quantum network engineering.
arXiv Detail & Related papers (2022-06-30T01:53:47Z) - Two ultracold highly magnetic atoms in a one-dimensional harmonic trap [0.0]
We theoretically investigate the properties of two interacting ultracold highly magnetic atoms trapped in a one-dimensional harmonic potential.
We show the role of inability and symmetries in the dynamics by studying the time evolution of the observables.
The presented model may depict the on-site interaction of the extended Hubbard models, therefore giving a better understanding of the fundamental building block of the respective many-body quantum simulators.
arXiv Detail & Related papers (2022-05-18T14:44:37Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Multidimensional synthetic chiral-tube lattices via nonlinear frequency
conversion [57.860179997051915]
We propose and experimentally realize all-optical synthetic dimensions involving specially tailored simultaneous short- and long-range interactions.
We implement a synthetic gauge field with nonzero magnetic flux and observe the associated multidimensional dynamics of frequency combs.
arXiv Detail & Related papers (2020-02-20T07:08:35Z) - Waveguide Quantum Electrodynamics with Giant Superconducting Artificial
Atoms [40.456646238780195]
We employ an alternative architecture that realizes a giant atom by coupling small atoms to a waveguide at multiple, but well separated, discrete locations.
Our realization of giant atoms enables tunable atom-waveguide couplings with large on-off ratios and a coupling spectrum that can be engineered by device design.
arXiv Detail & Related papers (2019-12-27T16:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.