Multidimensional synthetic chiral-tube lattices via nonlinear frequency
conversion
- URL: http://arxiv.org/abs/2002.08591v2
- Date: Tue, 25 Feb 2020 00:30:13 GMT
- Title: Multidimensional synthetic chiral-tube lattices via nonlinear frequency
conversion
- Authors: Kai Wang, Bryn Bell, Alexander S. Solntsev, Dragomir N. Neshev,
Benjamin J. Eggleton, Andrey A. Sukhorukov
- Abstract summary: We propose and experimentally realize all-optical synthetic dimensions involving specially tailored simultaneous short- and long-range interactions.
We implement a synthetic gauge field with nonzero magnetic flux and observe the associated multidimensional dynamics of frequency combs.
- Score: 57.860179997051915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Geometrical dimensionality plays a fundamentally important role in the
topological effects arising in discrete lattices. While direct experiments are
limited by three spatial dimensions, the research topic of synthetic dimensions
implemented by the frequency degree of freedom in photonics is rapidly
advancing. The manipulation of light in such artificial lattices is typically
realized through electro-optic modulation, yet their operating bandwidth
imposes practical constraints on the range of interactions between different
frequency components. Here we propose and experimentally realize all-optical
synthetic dimensions involving specially tailored simultaneous short- and
long-range interactions between discrete spectral lines mediated by frequency
conversion in a nonlinear waveguide. We realize triangular chiral-tube lattices
in three-dimensional space and explore their four-dimensional generalization.
We implement a synthetic gauge field with nonzero magnetic flux and observe the
associated multidimensional dynamics of frequency combs, all within one
physical spatial port. We anticipate that our method will provide a new means
for the fundamental study of high-dimensional physics and act as an important
step towards using topological effects in optical devices operating in the time
and frequency domains.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Dimensional Reduction in Quantum Optics [0.0]
One-dimensional quantum optical models usually rest on the intuition of large scale separation or frozen dynamics associated with the different spatial dimensions.
We show how the quantized electromagnetic field can be decomposed $-$ exactly $-$ into an infinite number of subfields living on a lower dimensional subspace.
The dimensional reduction approximation then corresponds to a truncation in the number of such subfields that in turn, when considering the interaction with for instance an atom, corresponds to a modification to the atomic spatial profile.
arXiv Detail & Related papers (2023-12-11T19:00:02Z) - Squeezing for Broadband Multidimensional Variational Measurement [55.2480439325792]
We show that optical losses inside cavity restrict back action exclusion due to loss noise.
We analyze how two-photon (nondegenerate) and conventional (degenerate) squeezing improve sensitivity with account optical losses.
arXiv Detail & Related papers (2023-10-06T18:41:29Z) - Time reflection and refraction in synthetic frequency dimension [3.4649462017122996]
We show that time reflection and refraction can be observed in a two-band model centered around a non-zero reference energy.
We find that modulation at microwave frequencies is sufficient to observe time boundary effects for optical waves in synthetic frequency dimension.
arXiv Detail & Related papers (2022-09-08T02:37:41Z) - Creating boundaries along a synthetic frequency dimension [2.7900873958676846]
We experimentally explore various physics effects associated with the creation of sharp boundaries in synthetic frequency dimensions.
The incorporation of boundaries allows us to observe topologically robust transport of light along the frequency axis.
arXiv Detail & Related papers (2022-03-21T19:11:10Z) - Topological band structure via twisted photons in a degenerate cavity [6.459947581214227]
We experimentally control the coupling among synthetic dimensions consisting of the intrinsic photonic orbital angular momentum and spin angular momentum degrees of freedom.
We directly characterize the system's properties, including the density of states, energy band structures and topological windings.
Our work demonstrates a novel mechanism for exploring the spatial modes of twisted photons as the synthetic dimension.
arXiv Detail & Related papers (2022-02-28T02:45:48Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Quantum optical synthesis in 2D time-frequency space [0.0]
Conventional optical synthesis relies on the Fourier transform of light fields between time and frequency domains in one-dimensional space.
We carry out an experimental demonstration by manipulating the two-photon probability distribution of a biphoton in two-dimensional time and frequency space.
Our approach opens up a new pathway to tailor the temporal characteristics of a biphoton wave packet with high dimensional quantum-mechanical treatment.
arXiv Detail & Related papers (2020-02-19T14:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.