Cross-lingual Adaption Model-Agnostic Meta-Learning for Natural Language
Understanding
- URL: http://arxiv.org/abs/2111.05805v1
- Date: Wed, 10 Nov 2021 16:53:50 GMT
- Title: Cross-lingual Adaption Model-Agnostic Meta-Learning for Natural Language
Understanding
- Authors: Qianying Liu, Fei Cheng, Sadao Kurohashi
- Abstract summary: We propose XLA-MAML, which performs direct cross-lingual adaption in the meta-learning stage.
We conduct zero-shot and few-shot experiments on Natural Language Inference and Question Answering.
- Score: 24.66203356497508
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Meta learning with auxiliary languages has demonstrated promising
improvements for cross-lingual natural language processing. However, previous
studies sample the meta-training and meta-testing data from the same language,
which limits the ability of the model for cross-lingual transfer. In this
paper, we propose XLA-MAML, which performs direct cross-lingual adaption in the
meta-learning stage. We conduct zero-shot and few-shot experiments on Natural
Language Inference and Question Answering. The experimental results demonstrate
the effectiveness of our method across different languages, tasks, and
pretrained models. We also give analysis on various cross-lingual specific
settings for meta-learning including sampling strategy and parallelism.
Related papers
- Multilingual Few-Shot Learning via Language Model Retrieval [18.465566186549072]
Transformer-based language models have achieved remarkable success in few-shot in-context learning.
We conduct a study of retrieving semantically similar few-shot samples and using them as the context.
We evaluate the proposed method on five natural language understanding datasets related to intent detection, question classification, sentiment analysis, and topic classification.
arXiv Detail & Related papers (2023-06-19T14:27:21Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
We propose XLM-P, which contextually retrieves prompts as flexible guidance for encoding instances conditionally.
Our XLM-P enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods.
arXiv Detail & Related papers (2023-06-13T08:08:08Z) - How do languages influence each other? Studying cross-lingual data sharing during LM fine-tuning [14.02101305717738]
Multilingual large language models (MLLMs) are jointly trained on data from many different languages.
It remains unclear to what extent, and under which conditions, languages rely on each other's data.
We find that MLLMs rely on data from multiple languages from the early stages of fine-tuning and that this reliance gradually increases as fine-tuning progresses.
arXiv Detail & Related papers (2023-05-22T17:47:41Z) - LERT: A Linguistically-motivated Pre-trained Language Model [67.65651497173998]
We propose LERT, a pre-trained language model that is trained on three types of linguistic features along with the original pre-training task.
We carried out extensive experiments on ten Chinese NLU tasks, and the experimental results show that LERT could bring significant improvements.
arXiv Detail & Related papers (2022-11-10T05:09:16Z) - Analyzing the Mono- and Cross-Lingual Pretraining Dynamics of
Multilingual Language Models [73.11488464916668]
This study investigates the dynamics of the multilingual pretraining process.
We probe checkpoints taken from throughout XLM-R pretraining, using a suite of linguistic tasks.
Our analysis shows that the model achieves high in-language performance early on, with lower-level linguistic skills acquired before more complex ones.
arXiv Detail & Related papers (2022-05-24T03:35:00Z) - Cross-lingual Lifelong Learning [53.06904052325966]
We present a principled Cross-lingual Continual Learning (CCL) evaluation paradigm.
We provide insights into what makes multilingual sequential learning particularly challenging.
The implications of this analysis include a recipe for how to measure and balance different cross-lingual continual learning desiderata.
arXiv Detail & Related papers (2022-05-23T09:25:43Z) - Cross-Lingual Language Model Meta-Pretraining [21.591492094502424]
We propose a cross-lingual language model meta-pretraining, which learns the two abilities in different training phases.
Our method improves both generalization and cross-lingual transfer, and produces better-aligned representations across different languages.
arXiv Detail & Related papers (2021-09-23T03:47:44Z) - A Massively Multilingual Analysis of Cross-linguality in Shared
Embedding Space [61.18554842370824]
In cross-lingual language models, representations for many different languages live in the same space.
We compute a task-based measure of cross-lingual alignment in the form of bitext retrieval performance.
We examine a range of linguistic, quasi-linguistic, and training-related features as potential predictors of these alignment metrics.
arXiv Detail & Related papers (2021-09-13T21:05:37Z) - Meta-Learning for Effective Multi-task and Multilingual Modelling [23.53779501937046]
We propose a meta-learning approach to learn the interactions between both tasks and languages.
We present experiments on five different tasks and six different languages from the XTREME multilingual benchmark dataset.
arXiv Detail & Related papers (2021-01-25T19:30:26Z) - Cross-lingual Spoken Language Understanding with Regularized
Representation Alignment [71.53159402053392]
We propose a regularization approach to align word-level and sentence-level representations across languages without any external resource.
Experiments on the cross-lingual spoken language understanding task show that our model outperforms current state-of-the-art methods in both few-shot and zero-shot scenarios.
arXiv Detail & Related papers (2020-09-30T08:56:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.