How do languages influence each other? Studying cross-lingual data sharing during LM fine-tuning
- URL: http://arxiv.org/abs/2305.13286v2
- Date: Tue, 21 May 2024 11:47:13 GMT
- Title: How do languages influence each other? Studying cross-lingual data sharing during LM fine-tuning
- Authors: Rochelle Choenni, Dan Garrette, Ekaterina Shutova,
- Abstract summary: Multilingual large language models (MLLMs) are jointly trained on data from many different languages.
It remains unclear to what extent, and under which conditions, languages rely on each other's data.
We find that MLLMs rely on data from multiple languages from the early stages of fine-tuning and that this reliance gradually increases as fine-tuning progresses.
- Score: 14.02101305717738
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multilingual large language models (MLLMs) are jointly trained on data from many different languages such that representation of individual languages can benefit from other languages' data. Impressive performance on zero-shot cross-lingual transfer shows that these models are capable of exploiting data from other languages. Yet, it remains unclear to what extent, and under which conditions, languages rely on each other's data. In this study, we use TracIn (Pruthi et al., 2020), a training data attribution (TDA) method, to retrieve the most influential training samples seen during multilingual fine-tuning for a particular test language. This allows us to analyse cross-lingual sharing mechanisms of MLLMs from a new perspective. While previous work studied cross-lingual sharing at the level of model parameters, we present the first approach to study cross-lingual sharing at the data level. We find that MLLMs rely on data from multiple languages from the early stages of fine-tuning and that this reliance gradually increases as fine-tuning progresses. We further study how different fine-tuning languages influence model performance on a given test language and find that they can both reinforce and complement the knowledge acquired from data of the test language itself.
Related papers
- Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
Large language models (LLMs) are typically multilingual due to pretraining on diverse multilingual corpora.
But can these models relate corresponding concepts across languages, effectively being crosslingual?
This study evaluates six state-of-the-art LLMs on inherently crosslingual tasks.
arXiv Detail & Related papers (2024-06-23T15:15:17Z) - What Drives Performance in Multilingual Language Models? [1.7648680700685022]
This study investigates the factors influencing the performance of multilingual large language models (MLLMs) across diverse languages.
We study 6 MLLMs, including masked language models, autoregressive models, and instruction-tuned LLMs, on the SIB-200 dataset.
arXiv Detail & Related papers (2024-04-29T23:49:19Z) - The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants [80.4837840962273]
We present Belebele, a dataset spanning 122 language variants.
This dataset enables the evaluation of text models in high-, medium-, and low-resource languages.
arXiv Detail & Related papers (2023-08-31T17:43:08Z) - Extrapolating Large Language Models to Non-English by Aligning Languages [109.09051737966178]
Existing large language models show disparate capability across different languages.
In this paper, we empower pre-trained LLMs on non-English languages by building semantic alignment across languages.
arXiv Detail & Related papers (2023-08-09T13:32:06Z) - Improving Polish to English Neural Machine Translation with Transfer
Learning: Effects of Data Volume and Language Similarity [2.4674086273775035]
We investigate the impact of data volume and the use of similar languages on transfer learning in a machine translation task.
We fine-tune mBART model for a Polish-English translation task using the OPUS-100 dataset.
Our experiments show that a combination of related languages and larger amounts of data outperforms the model trained on related languages or larger amounts of data alone.
arXiv Detail & Related papers (2023-06-01T13:34:21Z) - Learning Cross-lingual Visual Speech Representations [108.68531445641769]
Cross-lingual self-supervised visual representation learning has been a growing research topic in the last few years.
We use the recently-proposed Raw Audio-Visual Speechs (RAVEn) framework to pre-train an audio-visual model with unlabelled data.
Our experiments show that: (1) multi-lingual models with more data outperform monolingual ones, but, when keeping the amount of data fixed, monolingual models tend to reach better performance.
arXiv Detail & Related papers (2023-03-14T17:05:08Z) - Adapting Multilingual Speech Representation Model for a New,
Underresourced Language through Multilingual Fine-tuning and Continued
Pretraining [2.3513645401551333]
We investigate the possibility for adapting an existing multilingual wav2vec 2.0 model for a new language.
Our results show that continued pretraining is the most effective method to adapt a wav2vec 2.0 model for a new language.
We find that if a model pretrained on a related speech variety or an unrelated language with similar phonological characteristics is available, multilingual fine-tuning using additional data from that language can have positive impact on speech recognition performance.
arXiv Detail & Related papers (2023-01-18T03:57:53Z) - Languages You Know Influence Those You Learn: Impact of Language
Characteristics on Multi-Lingual Text-to-Text Transfer [4.554080966463776]
Multi-lingual language models (LM) have been remarkably successful in enabling natural language tasks in low-resource languages.
We try to better understand how such models, specifically mT5, transfer *any* linguistic and semantic knowledge across languages.
A key finding of this work is that similarity of syntax, morphology and phonology are good predictors of cross-lingual transfer.
arXiv Detail & Related papers (2022-12-04T07:22:21Z) - Analyzing the Mono- and Cross-Lingual Pretraining Dynamics of
Multilingual Language Models [73.11488464916668]
This study investigates the dynamics of the multilingual pretraining process.
We probe checkpoints taken from throughout XLM-R pretraining, using a suite of linguistic tasks.
Our analysis shows that the model achieves high in-language performance early on, with lower-level linguistic skills acquired before more complex ones.
arXiv Detail & Related papers (2022-05-24T03:35:00Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
Cross-lingual Machine Reading (CLMRC) remains a challenging problem due to the lack of large-scale datasets in low-source languages.
We propose a novel augmentation approach named Language Branch Machine Reading (LBMRC)
LBMRC trains multiple machine reading comprehension (MRC) models proficient in individual language.
We devise a multilingual distillation approach to amalgamate knowledge from multiple language branch models to a single model for all target languages.
arXiv Detail & Related papers (2020-10-27T13:12:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.