Recent Advances in Automated Question Answering In Biomedical Domain
- URL: http://arxiv.org/abs/2111.05937v1
- Date: Wed, 10 Nov 2021 20:51:29 GMT
- Title: Recent Advances in Automated Question Answering In Biomedical Domain
- Authors: Krishanu Das Baksi
- Abstract summary: In the past few decades there has been a proliferation of acquisition of knowledge and consequently there has been an exponential growth in new scientific articles in the field of biomedicine.
It has become difficult to keep track of all the information in the domain, even for domain experts.
With the improvements in commercial search engines, users can type in their queries and get a small set of documents most relevant for answering their query.
This has necessitated the development of efficient QA systems which aim to find exact and precise answers to user provided natural language questions.
- Score: 0.06922389632860546
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The objective of automated Question Answering (QA) systems is to provide
answers to user queries in a time efficient manner. The answers are usually
found in either databases (or knowledge bases) or a collection of documents
commonly referred to as the corpus. In the past few decades there has been a
proliferation of acquisition of knowledge and consequently there has been an
exponential growth in new scientific articles in the field of biomedicine.
Therefore, it has become difficult to keep track of all the information in the
domain, even for domain experts. With the improvements in commercial search
engines, users can type in their queries and get a small set of documents most
relevant for answering their query, as well as relevant snippets from the
documents in some cases. However, it may be still tedious and time consuming to
manually look for the required information or answers. This has necessitated
the development of efficient QA systems which aim to find exact and precise
answers to user provided natural language questions in the domain of
biomedicine. In this paper, we introduce the basic methodologies used for
developing general domain QA systems, followed by a thorough investigation of
different aspects of biomedical QA systems, including benchmark datasets and
several proposed approaches, both using structured databases and collection of
texts. We also explore the limitations of current systems and explore potential
avenues for further advancement.
Related papers
- Improving Health Question Answering with Reliable and Time-Aware Evidence Retrieval [5.69361786082969]
Our study focuses on the open-domain QA setting, where the key challenge is to first uncover relevant evidence in large knowledge bases.
By utilizing the common retrieve-then-read QA pipeline and PubMed as a trustworthy collection of medical research documents, we answer health questions from three diverse datasets.
Our results reveal that cutting down on the amount of retrieved documents and favoring more recent and highly cited documents can improve the final macro F1 score up to 10%.
arXiv Detail & Related papers (2024-04-12T09:56:12Z) - Improving Medical Reasoning through Retrieval and Self-Reflection with Retrieval-Augmented Large Language Models [18.984165679347026]
Self-BioRAG is a framework reliable for biomedical text that specializes in generating explanations, retrieving domain-specific documents, and self-reflecting generated responses.
We utilize 84k filtered biomedical instruction sets to train Self-BioRAG that can assess its generated explanations with customized reflective tokens.
arXiv Detail & Related papers (2024-01-27T02:29:42Z) - Around the GLOBE: Numerical Aggregation Question-Answering on
Heterogeneous Genealogical Knowledge Graphs with Deep Neural Networks [0.934612743192798]
We present a new end-to-end methodology for numerical aggregation QA for genealogical trees.
The proposed architecture, GLOBE, outperforms the state-of-the-art models and pipelines by achieving 87% accuracy for this task.
This study may have practical implications for genealogical information centers and museums.
arXiv Detail & Related papers (2023-07-30T12:09:00Z) - Contributions to the Improvement of Question Answering Systems in the
Biomedical Domain [0.951828574518325]
This thesis work falls within the framework of question answering (QA) in the biomedical domain.
We propose four contributions to improve the performance of QA in the biomedical domain.
We develop a fully automated semantic biomedical QA system called SemBioNLQA.
arXiv Detail & Related papers (2023-07-25T16:31:20Z) - Medical Question Understanding and Answering with Knowledge Grounding
and Semantic Self-Supervision [53.692793122749414]
We introduce a medical question understanding and answering system with knowledge grounding and semantic self-supervision.
Our system is a pipeline that first summarizes a long, medical, user-written question, using a supervised summarization loss.
The system first matches the summarized user question with an FAQ from a trusted medical knowledge base, and then retrieves a fixed number of relevant sentences from the corresponding answer document.
arXiv Detail & Related papers (2022-09-30T08:20:32Z) - RealTime QA: What's the Answer Right Now? [137.04039209995932]
We introduce REALTIME QA, a dynamic question answering (QA) platform that announces questions and evaluates systems on a regular basis.
We build strong baseline models upon large pretrained language models, including GPT-3 and T5.
GPT-3 tends to return outdated answers when retrieved documents do not provide sufficient information to find an answer.
arXiv Detail & Related papers (2022-07-27T07:26:01Z) - Addressing Issues of Cross-Linguality in Open-Retrieval Question
Answering Systems For Emergent Domains [67.99403521976058]
We demonstrate a cross-lingual open-retrieval question answering system for the emergent domain of COVID-19.
Our system adopts a corpus of scientific articles to ensure that retrieved documents are reliable.
We show that a deep semantic retriever greatly benefits from training on our English-to-all data and significantly outperforms a BM25 baseline in the cross-lingual setting.
arXiv Detail & Related papers (2022-01-26T19:27:32Z) - Domain-Specific Pretraining for Vertical Search: Case Study on
Biomedical Literature [67.4680600632232]
Self-supervised learning has emerged as a promising direction to overcome the annotation bottleneck.
We propose a general approach for vertical search based on domain-specific pretraining.
Our system can scale to tens of millions of articles on PubMed and has been deployed as Microsoft Biomedical Search.
arXiv Detail & Related papers (2021-06-25T01:02:55Z) - Biomedical Question Answering: A Comprehensive Review [19.38459023509541]
Question Answering (QA) is a benchmark Natural Language Processing (NLP) task where models predict the answer for a given question using related documents, images, knowledge bases and question-answer pairs.
For specific domains like biomedicine, QA systems are still rarely used in real-life settings.
Biomedical QA (BQA), as an emerging QA task, enables innovative applications to effectively perceive, access and understand complex biomedical knowledge.
arXiv Detail & Related papers (2021-02-10T06:16:35Z) - Retrieving and Reading: A Comprehensive Survey on Open-domain Question
Answering [62.88322725956294]
We review the latest research trends in OpenQA, with particular attention to systems that incorporate neural MRC techniques.
We introduce modern OpenQA architecture named Retriever-Reader'' and analyze the various systems that follow this architecture.
We then discuss key challenges to developing OpenQA systems and offer an analysis of benchmarks that are commonly used.
arXiv Detail & Related papers (2021-01-04T04:47:46Z) - A Survey on Complex Question Answering over Knowledge Base: Recent
Advances and Challenges [71.4531144086568]
Question Answering (QA) over Knowledge Base (KB) aims to automatically answer natural language questions.
Researchers have shifted their attention from simple questions to complex questions, which require more KB triples and constraint inference.
arXiv Detail & Related papers (2020-07-26T07:13:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.