Variational Auto-Encoder Architectures that Excel at Causal Inference
- URL: http://arxiv.org/abs/2111.06486v1
- Date: Thu, 11 Nov 2021 22:37:43 GMT
- Title: Variational Auto-Encoder Architectures that Excel at Causal Inference
- Authors: Negar Hassanpour, Russell Greiner
- Abstract summary: Estimating causal effects from observational data is critical for making many types of decisions.
One approach to address this task is to learn decomposed representations of the underlying factors of data.
In this paper, we take a generative approach that builds on the recent advances in Variational Auto-Encoders.
- Score: 26.731576721694648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating causal effects from observational data (at either an individual --
or a population -- level) is critical for making many types of decisions. One
approach to address this task is to learn decomposed representations of the
underlying factors of data; this becomes significantly more challenging when
there are confounding factors (which influence both the cause and the effect).
In this paper, we take a generative approach that builds on the recent advances
in Variational Auto-Encoders to simultaneously learn those underlying factors
as well as the causal effects. We propose a progressive sequence of models,
where each improves over the previous one, culminating in the Hybrid model. Our
empirical results demonstrate that the performance of all three proposed models
are superior to both state-of-the-art discriminative as well as other
generative approaches in the literature.
Related papers
- DAG-aware Transformer for Causal Effect Estimation [0.8192907805418583]
Causal inference is a critical task across fields such as healthcare, economics, and the social sciences.
In this paper, we present a novel transformer-based method for causal inference that overcomes these challenges.
The core innovation of our model lies in its integration of causal Directed Acyclic Graphs (DAGs) directly into the attention mechanism.
arXiv Detail & Related papers (2024-10-13T23:17:58Z) - A Study on Bias Detection and Classification in Natural Language Processing [2.908482270923597]
The aim of our work is to determine how to better combine publicly-available datasets to train models in the task of hate speech detection and classification.
We discuss these issues in tandem with the development of our experiments, in which we show that the combinations of different datasets greatly impact the models' performance.
arXiv Detail & Related papers (2024-08-14T11:49:24Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Towards Causal Foundation Model: on Duality between Causal Inference and Attention [18.046388712804042]
We take a first step towards building causally-aware foundation models for treatment effect estimations.
We propose a novel, theoretically justified method called Causal Inference with Attention (CInA)
arXiv Detail & Related papers (2023-10-01T22:28:34Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
We develop tools for decomposing spurious variations in Markovian and Semi-Markovian models.
We prove the first results that allow a non-parametric decomposition of spurious effects.
The described approach has several applications, ranging from explainable and fair AI to questions in epidemiology and medicine.
arXiv Detail & Related papers (2023-06-08T09:40:28Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
We introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables.
We devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph.
Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations.
arXiv Detail & Related papers (2021-11-29T18:59:09Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance.
We provide tractable algorithms to compute the range of attainable group-level predictive disparities.
We extend our framework to address the empirically relevant challenge of selectively labelled data.
arXiv Detail & Related papers (2021-01-02T02:11:37Z) - A Critical View of the Structural Causal Model [89.43277111586258]
We show that one can identify the cause and the effect without considering their interaction at all.
We propose a new adversarial training method that mimics the disentangled structure of the causal model.
Our multidimensional method outperforms the literature methods on both synthetic and real world datasets.
arXiv Detail & Related papers (2020-02-23T22:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.