Silicon photonic subspace neural chip for hardware-efficient deep
learning
- URL: http://arxiv.org/abs/2111.06705v1
- Date: Thu, 11 Nov 2021 06:34:05 GMT
- Title: Silicon photonic subspace neural chip for hardware-efficient deep
learning
- Authors: Chenghao Feng, Jiaqi Gu, Hanqing Zhu, Zhoufeng Ying, Zheng Zhao, David
Z. Pan and Ray T. Chen
- Abstract summary: optical neural network (ONN) is a promising candidate for next-generation neurocomputing.
We devise a hardware-efficient photonic subspace neural network architecture.
We experimentally demonstrate our PSNN on a butterfly-style programmable silicon photonic integrated circuit.
- Score: 11.374005508708995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As deep learning has shown revolutionary performance in many artificial
intelligence applications, its escalating computation demand requires hardware
accelerators for massive parallelism and improved throughput. The optical
neural network (ONN) is a promising candidate for next-generation
neurocomputing due to its high parallelism, low latency, and low energy
consumption. Here, we devise a hardware-efficient photonic subspace neural
network (PSNN) architecture, which targets lower optical component usage, area
cost, and energy consumption than previous ONN architectures with comparable
task performance. Additionally, a hardware-aware training framework is provided
to minimize the required device programming precision, lessen the chip area,
and boost the noise robustness. We experimentally demonstrate our PSNN on a
butterfly-style programmable silicon photonic integrated circuit and show its
utility in practical image recognition tasks.
Related papers
- Optical training of large-scale Transformers and deep neural networks with direct feedback alignment [48.90869997343841]
We experimentally implement a versatile and scalable training algorithm, called direct feedback alignment, on a hybrid electronic-photonic platform.
An optical processing unit performs large-scale random matrix multiplications, which is the central operation of this algorithm, at speeds up to 1500 TeraOps.
We study the compute scaling of our hybrid optical approach, and demonstrate a potential advantage for ultra-deep and wide neural networks.
arXiv Detail & Related papers (2024-09-01T12:48:47Z) - Sparsity-Aware Hardware-Software Co-Design of Spiking Neural Networks: An Overview [1.0499611180329804]
Spiking Neural Networks (SNNs) are inspired by the sparse and event-driven nature of biological neural processing, and offer the potential for ultra-low-power artificial intelligence.
We explore the hardware-software co-design of sparse SNNs, examining how sparsity representation, hardware architectures, and training techniques influence hardware efficiency.
Our work aims to illuminate the path towards embedded neuromorphic systems that fully exploit the computational advantages of sparse SNNs.
arXiv Detail & Related papers (2024-08-26T17:22:11Z) - Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
Traditional signal reconstruction methods on digital computers face both software and hardware challenges.
We propose a systematic approach with software-hardware co-optimizations for signal reconstruction from sparse inputs.
This work advances the AI-driven signal restoration technology and paves the way for future efficient and robust medical AI and 3D vision applications.
arXiv Detail & Related papers (2024-04-15T09:33:09Z) - Spyx: A Library for Just-In-Time Compiled Optimization of Spiking Neural
Networks [0.08965418284317034]
Spiking Neural Networks (SNNs) offer to enhance energy efficiency through a reduced and low-power hardware footprint.
This paper introduces Spyx, a new and lightweight SNN simulation and optimization library designed in JAX.
arXiv Detail & Related papers (2024-02-29T09:46:44Z) - Neural Network Methods for Radiation Detectors and Imaging [1.6395318070400589]
Recent advances in machine learning and especially deep neural networks (DNNs) allow for new optimization and performance-enhancement schemes for radiation detectors and imaging hardware.
We give an overview of data generation at photon sources, deep learning-based methods for image processing tasks, and hardware solutions for deep learning acceleration.
arXiv Detail & Related papers (2023-11-09T20:21:51Z) - Free-Space Optical Spiking Neural Network [0.0]
We introduce the Free-space Optical deep Spiking Convolutional Neural Network (OSCNN)
This novel approach draws inspiration from computational models of the human eye.
Our results demonstrate promising performance with minimal latency and power consumption compared to their electronic ONN counterparts.
arXiv Detail & Related papers (2023-11-08T09:41:14Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic chips with high energy efficiency.
We contribute a full-stack toolkit for pre-processing neuromorphic datasets, building deep SNNs, optimizing their parameters, and deploying SNNs on neuromorphic chips.
arXiv Detail & Related papers (2023-10-25T13:15:17Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
In this paper we propose a pose estimation software exploiting neural network architectures.
We show how low power machine learning accelerators could enable Artificial Intelligence exploitation in space.
arXiv Detail & Related papers (2022-04-07T08:53:18Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - Photonics for artificial intelligence and neuromorphic computing [52.77024349608834]
Photonic integrated circuits have enabled ultrafast artificial neural networks.
Photonic neuromorphic systems offer sub-nanosecond latencies.
These systems could address the growing demand for machine learning and artificial intelligence.
arXiv Detail & Related papers (2020-10-30T21:41:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.