Free-Space Optical Spiking Neural Network
- URL: http://arxiv.org/abs/2311.04558v1
- Date: Wed, 8 Nov 2023 09:41:14 GMT
- Title: Free-Space Optical Spiking Neural Network
- Authors: Reyhane Ahmadi, Amirreza Ahmadnejad, Somayyeh Koohi
- Abstract summary: We introduce the Free-space Optical deep Spiking Convolutional Neural Network (OSCNN)
This novel approach draws inspiration from computational models of the human eye.
Our results demonstrate promising performance with minimal latency and power consumption compared to their electronic ONN counterparts.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Neuromorphic engineering has emerged as a promising avenue for developing
brain-inspired computational systems. However, conventional electronic AI-based
processors often encounter challenges related to processing speed and thermal
dissipation. As an alternative, optical implementations of such processors have
been proposed, capitalizing on the intrinsic information-processing
capabilities of light. Within the realm of optical neuromorphic engineering,
various optical neural networks (ONNs) have been explored. Among these, Spiking
Neural Networks (SNNs) have exhibited notable success in emulating the
computational principles of the human brain. Nevertheless, the integration of
optical SNN processors has presented formidable obstacles, mainly when dealing
with the computational demands of large datasets. In response to these
challenges, we introduce a pioneering concept: the Free-space Optical deep
Spiking Convolutional Neural Network (OSCNN). This novel approach draws
inspiration from computational models of the human eye. We have meticulously
designed various optical components within the OSCNN to tackle object detection
tasks across prominent benchmark datasets, including MNIST, ETH 80, and
Caltech. Our results demonstrate promising performance with minimal latency and
power consumption compared to their electronic ONN counterparts. Additionally,
we conducted several pertinent simulations, such as optical intensity
to-latency conversion and synchronization. Of particular significance is the
evaluation of the feature extraction layer, employing a Gabor filter bank,
which stands to impact the practical deployment of diverse ONN architectures
significantly.
Related papers
- SpikeAtConv: An Integrated Spiking-Convolutional Attention Architecture for Energy-Efficient Neuromorphic Vision Processing [11.687193535939798]
Spiking Neural Networks (SNNs) offer a biologically inspired alternative to conventional artificial neural networks.
SNNs have yet to achieve competitive performance on complex visual tasks, such as image classification.
This study introduces a novel SNN architecture designed to enhance efficacy and task accuracy.
arXiv Detail & Related papers (2024-11-26T13:57:38Z) - Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
In neuromorphic computing, spiking neural networks (SNNs) perform inference tasks, offering significant efficiency gains for workloads involving sequential data.
Recent advances in hardware and software have demonstrated that embedding a few bits of payload in each spike exchanged between the spiking neurons can further enhance inference accuracy.
This paper investigates a wireless neuromorphic split computing architecture employing multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - Optical training of large-scale Transformers and deep neural networks with direct feedback alignment [48.90869997343841]
We experimentally implement a versatile and scalable training algorithm, called direct feedback alignment, on a hybrid electronic-photonic platform.
An optical processing unit performs large-scale random matrix multiplications, which is the central operation of this algorithm, at speeds up to 1500 TeraOps.
We study the compute scaling of our hybrid optical approach, and demonstrate a potential advantage for ultra-deep and wide neural networks.
arXiv Detail & Related papers (2024-09-01T12:48:47Z) - Sparsity-Aware Hardware-Software Co-Design of Spiking Neural Networks: An Overview [1.0499611180329804]
Spiking Neural Networks (SNNs) are inspired by the sparse and event-driven nature of biological neural processing, and offer the potential for ultra-low-power artificial intelligence.
We explore the hardware-software co-design of sparse SNNs, examining how sparsity representation, hardware architectures, and training techniques influence hardware efficiency.
Our work aims to illuminate the path towards embedded neuromorphic systems that fully exploit the computational advantages of sparse SNNs.
arXiv Detail & Related papers (2024-08-26T17:22:11Z) - 1-bit Quantized On-chip Hybrid Diffraction Neural Network Enabled by Authentic All-optical Fully-connected Architecture [4.594367761345624]
This study introduces the Hybrid Diffraction Neural Network (HDNN), a novel architecture that incorporates matrix multiplication into DNNs.
utilizing a singular phase modulation layer and an amplitude modulation layer, the trained neural network demonstrated remarkable accuracies of 96.39% and 89% in digit recognition tasks.
arXiv Detail & Related papers (2024-04-11T02:54:17Z) - Recent Advances in Scalable Energy-Efficient and Trustworthy Spiking
Neural networks: from Algorithms to Technology [11.479629320025673]
spiking neural networks (SNNs) have become an attractive alternative to deep neural networks for a broad range of signal processing applications.
We describe advances in algorithmic and optimization innovations to efficiently train and scale low-latency, and energy-efficient SNNs.
We discuss the potential path forward for research in building deployable SNN systems.
arXiv Detail & Related papers (2023-12-02T19:47:00Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Ultra-Low-Power FDSOI Neural Circuits for Extreme-Edge Neuromorphic
Intelligence [2.6199663901387997]
In-memory computing mixed-signal neuromorphic architectures provide promising ultra-low-power solutions for edge-computing sensory-processing applications.
We present a set of mixed-signal analog/digital circuits that exploit the features of advanced Fully-Depleted Silicon on Insulator (FDSOI) integration processes.
arXiv Detail & Related papers (2020-06-25T09:31:29Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
Spiking Neural Networks are cognitive algorithms mimicking neuron and synapse operational principles.
We present the state of the art of hardware implementations of spiking neural networks.
We discuss the strategies employed to leverage the characteristics of these event-driven algorithms at the hardware level.
arXiv Detail & Related papers (2020-05-04T13:24:00Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.