Directional transport along an atomic chain
- URL: http://arxiv.org/abs/2111.06734v1
- Date: Fri, 12 Nov 2021 14:26:14 GMT
- Title: Directional transport along an atomic chain
- Authors: R. Guti\'errez-J\'auregui and A. Asenjo-Garcia
- Abstract summary: We explore the possibility to create directional transport in an open, collective quantum system.
We find that directional waveguides allow for an efficient outcoupling of light by reducing backscattering channels at the edges.
A directional waveguide is shown to be more robust to localization, but at the cost of increased radiative losses.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by a recent prediction to engineer the dispersion relation of a
waveguide constructed from atomic components [arXiv:2104.08121], we explore the
possibility to create directional transport in an open, collective quantum
system. The optical response of the atomic waveguide is characterized through a
scattering-matrix formalism built upon theories of photoelectric detection that
allows us to find the required conditions for directional mode-to-mode
transmission to occur and be measured in an experimental setting. We find that
directional waveguides allow for an efficient outcoupling of light by reducing
backscattering channels at the edges. This reduced backscattering is seen to
play a major role on the dynamics when disorder is included numerically. A
directional waveguide is shown to be more robust to localization, but at the
cost of increased radiative losses.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Efficient single-photon directional transfer between waveguides via two giant atoms [1.4778851751964937]
We investigate the single-photon transport properties in a double-waveguide quantum electrodynamic system.
Our results indicate that resonant photons can be completely transferred between the two waveguides.
This study has potential applications in quantum networks and integrated photonic circuits.
arXiv Detail & Related papers (2024-07-09T07:49:16Z) - Machine Learning Extreme Acoustic Non-reciprocity in a Linear Waveguide
with Multiple Nonlinear Asymmetric Gates [68.8204255655161]
This work is a study of acoustic non-reciprocity exhibited by a passive one-dimensional linear waveguide incorporating two local strongly nonlinear, asymmetric gates.
The maximum transmissibility reaches as much as 40%, and the transmitted energy from upstream to downstream varies up to nine orders of magnitude, depending on the direction of wave propagation.
arXiv Detail & Related papers (2023-02-02T17:28:04Z) - On-chip polarization-encoded single-qubit gates with twisted waveguides [58.720142291102135]
We develop a theory of a twisted waveguide unveiling its eigenmodes and transmission matrix in the closed form.
We demonstrate that twisted waveguides can realize virtually arbitrary polarization transformations while satisfying reasonable design constraints.
arXiv Detail & Related papers (2022-12-27T16:00:07Z) - Chiral SQUID-metamaterial waveguide for circuit-QED [6.218498009194957]
We propose a method to engineer 1D Josephson microwave waveguide as a chiral metamaterial.
We analyze both Markovian and non-Markovian quantum dynamics, and find that superconducting qubits can dissipate photons unidirectionally.
Our work might open the possibilities to exploit SQUID metamaterials realizing unidirectional photon transport in circuit-QED platforms.
arXiv Detail & Related papers (2022-06-14T03:45:41Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Single collective excitation of an atomic array trapped along a
waveguide: a study of cooperative emission for different atomic chain
configurations [0.0]
Ordered atomic arrays trapped in the vicinity of nanoscale waveguides offer original light-matter interfaces.
We study the decay dynamics of a single collective atomic excitation coupled to a waveguide in different configurations.
arXiv Detail & Related papers (2021-01-14T00:01:06Z) - Collective photon routing improvement in a dissipative quantum emitter
chain strongly coupled to a chiral waveguide QED ladder [0.0]
We show that the collective effects arising from the strong DDI protect the routing scheme from spontaneous emission loss.
We demonstrate that the router operation can be improved from $58%$ to $95%$ in a typical dissipative chiral light-matter interface.
arXiv Detail & Related papers (2020-06-20T07:07:17Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Programmable directional emitter and receiver of itinerant microwave
photons in a waveguide [0.0]
The proposed device is an artificial molecule composed of two qubits coupled to a waveguide a quarter-wavelength apart.
We show that a photon is emitted directionally as a result of the destructive interference occurring either at the right or left of the qubits.
This artificial molecule possesses the capability of absorbing and transmitting an incoming photon on-demand.
arXiv Detail & Related papers (2020-04-04T12:53:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.