Programmable directional emitter and receiver of itinerant microwave
photons in a waveguide
- URL: http://arxiv.org/abs/2004.01924v2
- Date: Thu, 26 Nov 2020 13:40:50 GMT
- Title: Programmable directional emitter and receiver of itinerant microwave
photons in a waveguide
- Authors: Nicolas Gheeraert, Shingo Kono and Yasunobu Nakamura
- Abstract summary: The proposed device is an artificial molecule composed of two qubits coupled to a waveguide a quarter-wavelength apart.
We show that a photon is emitted directionally as a result of the destructive interference occurring either at the right or left of the qubits.
This artificial molecule possesses the capability of absorbing and transmitting an incoming photon on-demand.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We theoretically demonstrate dynamically selective bidirectional emission and
absorption of a single itinerant microwave photon in a waveguide. The proposed
device is an artificial molecule composed of two qubits coupled to a waveguide
a quarter-wavelength apart. By using simulations based on the input--output
theory, we show that upon preparing an appropriate entangled state of the two
qubits, a photon is emitted directionally as a result of the destructive
interference occurring either at the right or left of the qubits. Moreover, we
demonstrate that this artificial molecule possesses the capability of absorbing
and transmitting an incoming photon on-demand, a feature essential to the
creation of a fully inter-connected one-dimensional quantum network, in which
quantum information can be exchanged between any two given nodes.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Efficient single-photon directional transfer between waveguides via two giant atoms [1.4778851751964937]
We investigate the single-photon transport properties in a double-waveguide quantum electrodynamic system.
Our results indicate that resonant photons can be completely transferred between the two waveguides.
This study has potential applications in quantum networks and integrated photonic circuits.
arXiv Detail & Related papers (2024-07-09T07:49:16Z) - Directional emission and photon bunching from a qubit pair in waveguide [0.0]
We consider a pair of identical qubits coupled to a parity invariant waveguide in the microwave domain.
We show the common origin of directional single photon emission and two photon directional bunching.
arXiv Detail & Related papers (2024-02-02T10:22:05Z) - Independent electrical control of two quantum dots coupled through a
photonic-crystal waveguide [0.49252227263015774]
Two semiconductor quantum dot emitters are efficiently coupled to a photonic-crystal waveguide.
We exploit the single-photon stream from one quantum dot to perform spectroscopy on the second quantum dot positioned 16$mu$m away in the waveguide.
arXiv Detail & Related papers (2023-03-01T09:13:47Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - On-Demand Directional Microwave Photon Emission Using Waveguide Quantum
Electrodynamics [38.42250061908039]
We demonstrate high-fidelity, on-demand, directional, microwave photon emission.
We do this using an artificial molecule comprising two superconducting qubits strongly coupled to a bidirectional waveguide.
This circuit will also be capable of photon absorption, making it suitable for building interconnects within quantum networks.
arXiv Detail & Related papers (2022-03-02T21:45:00Z) - Engineering symmetry-selective couplings of a superconducting artificial
molecule to microwave waveguides [0.0]
We demonstrate a novel coupling scheme between an artificial molecule comprising two identical, strongly coupled transmon qubits, and two microwave waveguides.
We show that this coupling arrangement makes it possible to straightforwardly generate spatially-separated Bell states propagating across the waveguides.
We envisage further applications to quantum thermodynamics, microwave photodetection, and photon-photon gates.
arXiv Detail & Related papers (2022-02-24T17:16:11Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Quantum interface between light and a one-dimensional atomic system [58.720142291102135]
We investigate optimal conditions for the quantum interface between a signal photon pulse and one-dimensional chain consisting of a varied number of atoms.
The efficiency of interaction is mainly limited by achieved overlap and coupling of the waveguide evanescent field with the trapped atoms.
arXiv Detail & Related papers (2020-04-11T11:43:54Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.