Sci-Net: a Scale Invariant Model for Building Detection from Aerial
Images
- URL: http://arxiv.org/abs/2111.06812v1
- Date: Fri, 12 Nov 2021 16:45:20 GMT
- Title: Sci-Net: a Scale Invariant Model for Building Detection from Aerial
Images
- Authors: Hasan Nasrallah, Ali J. Ghandour
- Abstract summary: We propose a Scale-invariant neural network (Sci-Net) that is able to segment buildings present in aerial images at different spatial resolutions.
Specifically, we modified the U-Net architecture and fused it with dense Atrous Spatial Pyramid Pooling (ASPP) to extract fine-grained multi-scale representations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Buildings' segmentation is a fundamental task in the field of earth
observation and aerial imagery analysis. Most existing deep learning based
algorithms in the literature can be applied on fixed or narrow-ranged spatial
resolution imagery. In practical scenarios, users deal with a wide spectrum of
images resolution and thus, often need to resample a given aerial image to
match the spatial resolution of the dataset used to train the deep learning
model. This however, would result in a severe degradation in the quality of the
output segmentation masks. To deal with this issue, we propose in this research
a Scale-invariant neural network (Sci-Net) that is able to segment buildings
present in aerial images at different spatial resolutions. Specifically, we
modified the U-Net architecture and fused it with dense Atrous Spatial Pyramid
Pooling (ASPP) to extract fine-grained multi-scale representations. We compared
the performance of our proposed model against several state of the art models
on the Open Cities AI dataset, and showed that Sci-Net provides a steady
improvement margin in performance across all resolutions available in the
dataset.
Related papers
- Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Joint Learning of Deep Texture and High-Frequency Features for
Computer-Generated Image Detection [24.098604827919203]
We propose a joint learning strategy with deep texture and high-frequency features for CG image detection.
A semantic segmentation map is generated to guide the affine transformation operation.
The combination of the original image and the high-frequency components of the original and rendered images are fed into a multi-branch neural network equipped with attention mechanisms.
arXiv Detail & Related papers (2022-09-07T17:30:40Z) - Progressive Domain Adaptation with Contrastive Learning for Object
Detection in the Satellite Imagery [0.0]
State-of-the-art object detection methods largely fail to identify small and dense objects.
We propose a small object detection pipeline that improves the feature extraction process.
We show we can alleviate the degradation of object identification in previously unseen datasets.
arXiv Detail & Related papers (2022-09-06T15:16:35Z) - Exploiting Digital Surface Models for Inferring Super-Resolution for
Remotely Sensed Images [2.3204178451683264]
This paper introduces a novel approach for forcing an SRR model to output realistic remote sensing images.
Instead of relying on feature-space similarities as a perceptual loss, the model considers pixel-level information inferred from the normalized Digital Surface Model (nDSM) of the image.
Based on visual inspection, the inferred super-resolution images exhibit particularly superior quality.
arXiv Detail & Related papers (2022-05-09T06:02:50Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
We present a learning-based solution for restoring images suffering from spatially-varying degradations.
We propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts to difficult regions in the image.
arXiv Detail & Related papers (2021-08-19T11:02:25Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z) - SaNet: Scale-aware neural Network for Parsing Multiple Spatial
Resolution Aerial Images [0.0]
We propose a novel scale-aware neural network (SaNet) for parsing multiple spatial resolution aerial images.
For coping with the imbalanced segmentation quality between larger and smaller objects caused by the scale variation, the SaNet deploys a densely connected feature network (DCFPN) module.
To alleviate the informative feature loss, a SFR module is incorporated into the network to learn scale-invariant features with spatial relation enhancement.
arXiv Detail & Related papers (2021-03-14T14:19:46Z) - Boundary Regularized Building Footprint Extraction From Satellite Images
Using Deep Neural Network [6.371173732947292]
We propose a novel deep neural network, which enables to jointly detect building instance and regularize noisy building boundary shapes from a single satellite imagery.
Our model can accomplish multi-tasks of object localization, recognition, semantic labelling and geometric shape extraction simultaneously.
arXiv Detail & Related papers (2020-06-23T17:24:09Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.