Small or Far Away? Exploiting Deep Super-Resolution and Altitude Data
for Aerial Animal Surveillance
- URL: http://arxiv.org/abs/2111.06830v1
- Date: Fri, 12 Nov 2021 17:30:55 GMT
- Title: Small or Far Away? Exploiting Deep Super-Resolution and Altitude Data
for Aerial Animal Surveillance
- Authors: Mowen Xue, Theo Greenslade, Majid Mirmehdi, Tilo Burghardt
- Abstract summary: We show that a holistic attention network based super-resolution approach and a custom-built altitude data exploitation network can increase the detection efficacy in real-world settings.
We evaluate the system on two public, large aerial-capture animal datasets, SAVMAP and AED.
- Score: 3.8015092217142223
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visuals captured by high-flying aerial drones are increasingly used to assess
biodiversity and animal population dynamics around the globe. Yet, challenging
acquisition scenarios and tiny animal depictions in airborne imagery, despite
ultra-high resolution cameras, have so far been limiting factors for applying
computer vision detectors successfully with high confidence. In this paper, we
address the problem for the first time by combining deep object detectors with
super-resolution techniques and altitude data. In particular, we show that the
integration of a holistic attention network based super-resolution approach and
a custom-built altitude data exploitation network into standard recognition
pipelines can considerably increase the detection efficacy in real-world
settings. We evaluate the system on two public, large aerial-capture animal
datasets, SAVMAP and AED. We find that the proposed approach can consistently
improve over ablated baselines and the state-of-the-art performance for both
datasets. In addition, we provide a systematic analysis of the relationship
between animal resolution and detection performance. We conclude that
super-resolution and altitude knowledge exploitation techniques can
significantly increase benchmarks across settings and, thus, should be used
routinely when detecting minutely resolved animals in aerial imagery.
Related papers
- Multiview Aerial Visual Recognition (MAVREC): Can Multi-view Improve
Aerial Visual Perception? [57.77643186237265]
We present Multiview Aerial Visual RECognition or MAVREC, a video dataset where we record synchronized scenes from different perspectives.
MAVREC consists of around 2.5 hours of industry-standard 2.7K resolution video sequences, more than 0.5 million frames, and 1.1 million annotated bounding boxes.
This makes MAVREC the largest ground and aerial-view dataset, and the fourth largest among all drone-based datasets.
arXiv Detail & Related papers (2023-12-07T18:59:14Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Weakly supervised marine animal detection from remote sensing images
using vector-quantized variational autoencoder [4.812718493682454]
This paper studies a reconstruction-based approach for weakly-supervised animal detection from aerial images in marine environments.
An anomaly detection framework computes metrics directly on the input space, enhancing interpretability and anomaly localization.
Our framework offers improved interpretability and localization of anomalies, providing valuable insights for monitoring marine ecosystems.
arXiv Detail & Related papers (2023-07-13T12:26:27Z) - Progressive Domain Adaptation with Contrastive Learning for Object
Detection in the Satellite Imagery [0.0]
State-of-the-art object detection methods largely fail to identify small and dense objects.
We propose a small object detection pipeline that improves the feature extraction process.
We show we can alleviate the degradation of object identification in previously unseen datasets.
arXiv Detail & Related papers (2022-09-06T15:16:35Z) - Towards Robust Drone Vision in the Wild [1.14219428942199]
In this thesis, we propose the first image super-resolution dataset for drone vision.
We collect data at different altitudes and then propose pre-processing steps to align image pairs.
Two methods are proposed to build a robust image super-resolution network at different altitudes.
arXiv Detail & Related papers (2022-08-21T18:19:19Z) - The State of Aerial Surveillance: A Survey [62.198765910573556]
This paper provides a comprehensive overview of human-centric aerial surveillance tasks from a computer vision and pattern recognition perspective.
The main object of interest is humans, where single or multiple subjects are to be detected, identified, tracked, re-identified and have their behavior analyzed.
arXiv Detail & Related papers (2022-01-09T20:13:27Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
The visual inspection of aerial drone footage is an integral part of land search and rescue (SAR) operations today.
We propose a novel deep learning algorithm to automate this aerial person detection (APD) task.
We present the novel Aerial Inspection RetinaNet (AIR) algorithm as the combination of these contributions.
arXiv Detail & Related papers (2021-11-17T21:48:31Z) - AdaZoom: Adaptive Zoom Network for Multi-Scale Object Detection in Large
Scenes [57.969186815591186]
Detection in large-scale scenes is a challenging problem due to small objects and extreme scale variation.
We propose a novel Adaptive Zoom (AdaZoom) network as a selective magnifier with flexible shape and focal length to adaptively zoom the focus regions for object detection.
arXiv Detail & Related papers (2021-06-19T03:30:22Z) - EmergencyNet: Efficient Aerial Image Classification for Drone-Based
Emergency Monitoring Using Atrous Convolutional Feature Fusion [8.634988828030245]
This article focuses on the efficient aerial image classification from on-board a UAV for emergency response/monitoring applications.
A dedicated Aerial Image Database for Emergency Response applications is introduced and a comparative analysis of existing approaches is performed.
A lightweight convolutional neural network architecture is proposed, referred to as EmergencyNet, based on atrous convolutions to process multiresolution features.
arXiv Detail & Related papers (2021-04-28T20:24:10Z) - Perceiving Traffic from Aerial Images [86.994032967469]
We propose an object detection method called Butterfly Detector that is tailored to detect objects in aerial images.
We evaluate our Butterfly Detector on two publicly available UAV datasets (UAVDT and VisDrone 2019) and show that it outperforms previous state-of-the-art methods while remaining real-time.
arXiv Detail & Related papers (2020-09-16T11:37:43Z) - EAGLE: Large-scale Vehicle Detection Dataset in Real-World Scenarios
using Aerial Imagery [3.8902657229395894]
We introduce a large-scale dataset for multi-class vehicle detection with object orientation information in aerial imagery.
It features high-resolution aerial images composed of different real-world situations with a wide variety of camera sensor, resolution, flight altitude, weather, illumination, haze, shadow, time, city, country, occlusion, and camera angle.
It contains 215,986 instances annotated with oriented bounding boxes defined by four points and orientation, making it by far the largest dataset to date in this task.
It also supports researches on the haze and shadow removal as well as super-resolution and in-painting applications.
arXiv Detail & Related papers (2020-07-12T23:00:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.