Weakly supervised marine animal detection from remote sensing images
using vector-quantized variational autoencoder
- URL: http://arxiv.org/abs/2307.06720v1
- Date: Thu, 13 Jul 2023 12:26:27 GMT
- Title: Weakly supervised marine animal detection from remote sensing images
using vector-quantized variational autoencoder
- Authors: Minh-Tan Pham, Hugo Gangloff and S\'ebastien Lef\`evre
- Abstract summary: This paper studies a reconstruction-based approach for weakly-supervised animal detection from aerial images in marine environments.
An anomaly detection framework computes metrics directly on the input space, enhancing interpretability and anomaly localization.
Our framework offers improved interpretability and localization of anomalies, providing valuable insights for monitoring marine ecosystems.
- Score: 4.812718493682454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies a reconstruction-based approach for weakly-supervised
animal detection from aerial images in marine environments. Such an approach
leverages an anomaly detection framework that computes metrics directly on the
input space, enhancing interpretability and anomaly localization compared to
feature embedding methods. Building upon the success of Vector-Quantized
Variational Autoencoders in anomaly detection on computer vision datasets, we
adapt them to the marine animal detection domain and address the challenge of
handling noisy data. To evaluate our approach, we compare it with existing
methods in the context of marine animal detection from aerial image data.
Experiments conducted on two dedicated datasets demonstrate the superior
performance of the proposed method over recent studies in the literature. Our
framework offers improved interpretability and localization of anomalies,
providing valuable insights for monitoring marine ecosystems and mitigating the
impact of human activities on marine animals.
Related papers
- GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features [68.14842693208465]
GeneralAD is an anomaly detection framework designed to operate in semantic, near-distribution, and industrial settings.
We propose a novel self-supervised anomaly generation module that employs straightforward operations like noise addition and shuffling to patch features.
We extensively evaluated our approach on ten datasets, achieving state-of-the-art results in six and on-par performance in the remaining.
arXiv Detail & Related papers (2024-07-17T09:27:41Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - Improving Buoy Detection with Deep Transfer Learning for Mussel Farm
Automation [7.906113472259946]
The aquaculture sector in New Zealand is experiencing rapid expansion, with a particular emphasis on mussel exports.
As the demands of mussel farming operations continue to evolve, the integration of artificial intelligence and computer vision techniques is emerging as an effective approach to enhance operational efficiency.
This study delves into advancing buoy detection by leveraging deep learning methodologies for intelligent mussel farm monitoring and management.
arXiv Detail & Related papers (2023-08-18T01:53:47Z) - Large-scale Detection of Marine Debris in Coastal Areas with Sentinel-2 [3.6842260407632903]
Efforts to quantify marine pollution are often conducted with sparse and expensive beach surveys.
Satellite data of coastal areas is readily available and can be leveraged to detect aggregations of marine debris containing plastic litter.
We present a detector for marine debris built on a deep segmentation model that outputs a probability for marine debris at the pixel level.
arXiv Detail & Related papers (2023-07-05T17:38:48Z) - Spectral Analysis of Marine Debris in Simulated and Observed
Sentinel-2/MSI Images using Unsupervised Classification [0.0]
This study uses Radiative Transfer Model (RTM) simulated data and data from the Multispectral Instrument (MSI) of the Sentinel-2 mission in combination with machine learning algorithms.
The results indicate that the spectral behavior of pollutants is influenced by factors such as the type of polymer and pixel coverage percentage.
These insights can guide future research in remote sensing applications for detecting marine plastic pollution.
arXiv Detail & Related papers (2023-06-26T18:46:47Z) - GAMMA: Generative Augmentation for Attentive Marine Debris Detection [0.0]
We propose an efficient and generative augmentation approach to solve the inadequacy concern of underwater debris data for visual detection.
We use cycleGAN as a data augmentation technique to convert openly available, abundant data of terrestrial plastic to underwater-style images.
We also propose a novel architecture for underwater debris detection using an attention mechanism.
arXiv Detail & Related papers (2022-12-07T16:30:51Z) - DeepAdversaries: Examining the Robustness of Deep Learning Models for
Galaxy Morphology Classification [47.38422424155742]
In morphological classification of galaxies, we study the effects of perturbations in imaging data.
We show that training with domain adaptation improves model robustness and mitigates the effects of these perturbations.
arXiv Detail & Related papers (2021-12-28T21:29:02Z) - Small or Far Away? Exploiting Deep Super-Resolution and Altitude Data
for Aerial Animal Surveillance [3.8015092217142223]
We show that a holistic attention network based super-resolution approach and a custom-built altitude data exploitation network can increase the detection efficacy in real-world settings.
We evaluate the system on two public, large aerial-capture animal datasets, SAVMAP and AED.
arXiv Detail & Related papers (2021-11-12T17:30:55Z) - Pretrained equivariant features improve unsupervised landmark discovery [69.02115180674885]
We formulate a two-step unsupervised approach that overcomes this challenge by first learning powerful pixel-based features.
Our method produces state-of-the-art results in several challenging landmark detection datasets.
arXiv Detail & Related papers (2021-04-07T05:42:11Z) - Movement Tracks for the Automatic Detection of Fish Behavior in Videos [63.85815474157357]
We offer a dataset of sablefish (Anoplopoma fimbria) startle behaviors in underwater videos, and investigate the use of deep learning (DL) methods for behavior detection on it.
Our proposed detection system identifies fish instances using DL-based frameworks, determines trajectory tracks, derives novel behavior-specific features, and employs Long Short-Term Memory (LSTM) networks to identify startle behavior in sablefish.
arXiv Detail & Related papers (2020-11-28T05:51:19Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.