Impact of loss functions on the performance of a deep neural network
designed to restore low-dose digital mammography
- URL: http://arxiv.org/abs/2111.06890v1
- Date: Fri, 12 Nov 2021 14:15:08 GMT
- Title: Impact of loss functions on the performance of a deep neural network
designed to restore low-dose digital mammography
- Authors: Hongming Shan, Rodrigo de Barros Vimieiro, Lucas Rodrigues Borges,
Marcelo Andrade da Costa Vieira and Ge Wang
- Abstract summary: ResNet architecture, with hierarchical skip connections, is proposed to restore low-dose digital mammography.
We extracted 256,000 image patches from a dataset of 400 images of retrospective clinical mammography exams.
To validate the network in a real scenario, a physical anthropomorphic breast phantom was used to acquire real low-dose and standard full-dose images.
- Score: 8.041868861658
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Digital mammography is still the most common imaging tool for breast cancer
screening. Although the benefits of using digital mammography for cancer
screening outweigh the risks associated with the x-ray exposure, the radiation
dose must be kept as low as possible while maintaining the diagnostic utility
of the generated images, thus minimizing patient risks. Many studies
investigated the feasibility of dose reduction by restoring low-dose images
using deep neural networks. In these cases, choosing the appropriate training
database and loss function is crucial and impacts the quality of the results.
In this work, a modification of the ResNet architecture, with hierarchical skip
connections, is proposed to restore low-dose digital mammography. We compared
the restored images to the standard full-dose images. Moreover, we evaluated
the performance of several loss functions for this task. For training purposes,
we extracted 256,000 image patches from a dataset of 400 images of
retrospective clinical mammography exams, where different dose levels were
simulated to generate low and standard-dose pairs. To validate the network in a
real scenario, a physical anthropomorphic breast phantom was used to acquire
real low-dose and standard full-dose images in a commercially avaliable
mammography system, which were then processed through our trained model. An
analytical restoration model for low-dose digital mammography, previously
presented, was used as a benchmark in this work. Objective assessment was
performed through the signal-to-noise ratio (SNR) and mean normalized squared
error (MNSE), decomposed into residual noise and bias. Results showed that the
perceptual loss function (PL4) is able to achieve virtually the same noise
levels of a full-dose acquisition, while resulting in smaller signal bias
compared to other loss functions.
Related papers
- Cycle-Constrained Adversarial Denoising Convolutional Network for PET Image Denoising: Multi-Dimensional Validation on Large Datasets with Reader Study and Real Low-Dose Data [9.160782425067712]
We propose a Cycle-versa Adrial Denoising Convolutional Network (Cycle-DCN) to reconstruct full-dose-quality images from low-dose scans.
Experiments were conducted on a large dataset consisting of raw PET brain data from 1,224 patients.
Cycle-DCN significantly improves average Peak Signal-to-Noise Ratio (PSNR), SSIM, and Normalized Root Mean Square Error (NRMSE) across three dose levels.
arXiv Detail & Related papers (2024-10-31T04:34:28Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - Feature-oriented Deep Learning Framework for Pulmonary Cone-beam CT
(CBCT) Enhancement with Multi-task Customized Perceptual Loss [9.59233136691378]
Cone-beam computed tomography (CBCT) is routinely collected during image-guided radiation therapy.
Recent deep learning-based CBCT enhancement methods have shown promising results in suppressing artifacts.
We propose a novel feature-oriented deep learning framework that translates low-quality CBCT images into high-quality CT-like imaging.
arXiv Detail & Related papers (2023-11-01T10:09:01Z) - Faithful Synthesis of Low-dose Contrast-enhanced Brain MRI Scans using
Noise-preserving Conditional GANs [102.47542231659521]
Gadolinium-based contrast agents (GBCA) are indispensable in Magnetic Resonance Imaging (MRI) for diagnosing various diseases.
GBCAs are expensive and may accumulate in patients with potential side effects.
It is unclear to which extent the GBCA dose can be reduced while preserving the diagnostic value.
arXiv Detail & Related papers (2023-06-26T13:19:37Z) - One Sample Diffusion Model in Projection Domain for Low-Dose CT Imaging [10.797632196651731]
Low-dose computed tomography (CT) plays a significant role in reducing the radiation risk in clinical applications.
With the rapid development and wide application of deep learning, it has brought new directions for the development of low-dose CT imaging algorithms.
We propose a fully unsupervised one sample diffusion model (OSDM)in projection domain for low-dose CT reconstruction.
The results prove that OSDM is practical and effective model for reducing the artifacts and preserving the image quality.
arXiv Detail & Related papers (2022-12-07T13:39:23Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Convolutional Neural Network to Restore Low-Dose Digital Breast
Tomosynthesis Projections in a Variance Stabilization Domain [15.149874383250236]
convolution neural network (CNN) proposed to restore low-dose (LD) projections to image quality equivalent to a standard full-dose (FD) acquisition.
Network achieved superior results in terms of the mean squared error (MNSE), normalized training time and noise spatial correlation compared with networks trained with traditional data-driven methods.
arXiv Detail & Related papers (2022-03-22T13:31:47Z) - Self-Attention Generative Adversarial Network for Iterative
Reconstruction of CT Images [0.9208007322096533]
The aim of this study is to train a single neural network to reconstruct high-quality CT images from noisy or incomplete data.
The network includes a self-attention block to model long-range dependencies in the data.
Our approach is shown to have comparable overall performance to CIRCLE GAN, while outperforming the other two approaches.
arXiv Detail & Related papers (2021-12-23T19:20:38Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.