Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks
- URL: http://arxiv.org/abs/2007.10859v1
- Date: Tue, 21 Jul 2020 14:37:00 GMT
- Title: Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks
- Authors: Congbo Ma, Hu Wang, Steven C.H. Hoi
- Abstract summary: We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
- Score: 65.37531731899837
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated disease classification of radiology images has been emerging as a
promising technique to support clinical diagnosis and treatment planning.
Unlike generic image classification tasks, a real-world radiology image
classification task is significantly more challenging as it is far more
expensive to collect the training data where the labeled data is in nature
multi-label; and more seriously samples from easy classes often dominate;
training data is highly class-imbalanced problem exists in practice as well. To
overcome these challenges, in this paper, we propose a novel scheme of
Cross-Attention Networks (CAN) for automated thoracic disease classification
from chest x-ray images, which can effectively excavate more meaningful
representation from data to boost the performance through cross-attention by
only image-level annotations. We also design a new loss function that beyond
cross-entropy loss to help cross-attention process and is able to overcome the
imbalance between classes and easy-dominated samples within each class. The
proposed method achieves state-of-the-art results.
Related papers
- Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
We propose a new fine-tuning strategy that includes positive-pair loss relaxation and random sentence sampling.
Our approach consistently improves overall zero-shot pathology classification across four chest X-ray datasets and three pre-trained models.
arXiv Detail & Related papers (2022-12-14T06:04:18Z) - Robust Medical Image Classification from Noisy Labeled Data with Global
and Local Representation Guided Co-training [73.60883490436956]
We propose a novel collaborative training paradigm with global and local representation learning for robust medical image classification.
We employ the self-ensemble model with a noisy label filter to efficiently select the clean and noisy samples.
We also design a novel global and local representation learning scheme to implicitly regularize the networks to utilize noisy samples.
arXiv Detail & Related papers (2022-05-10T07:50:08Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
In Computer-Aided Diagnosis (CAD), traditional classification models mostly use a single network to extract features.
This paper proposes a deep ensemble model based on image-level labels for the binary classification of benign and malignant lesions.
Result: In the ensemble network model with accuracy as the weight, the image-level binary classification achieves an accuracy of $98.90%$.
arXiv Detail & Related papers (2022-04-18T13:31:53Z) - Weakly-supervised Generative Adversarial Networks for medical image
classification [1.479639149658596]
We propose a novel medical image classification algorithm called Weakly-Supervised Generative Adversarial Networks (WSGAN)
WSGAN only uses a small number of real images without labels to generate fake images or mask images to enlarge the sample size of the training set.
We show that WSGAN can obtain relatively high learning performance by using few labeled and unlabeled data.
arXiv Detail & Related papers (2021-11-29T15:38:48Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Positional Contrastive Learning for Volumetric Medical Image
Segmentation [13.086140606803408]
We propose a novel positional contrastive learning framework to generate contrastive data pairs.
The proposed PCL method can substantially improve the segmentation performance compared to existing methods in both semi-supervised setting and transfer learning setting.
arXiv Detail & Related papers (2021-06-16T22:15:28Z) - Improving Medical Annotation Quality to Decrease Labeling Burden Using
Stratified Noisy Cross-Validation [3.690031561736533]
Variability in diagnosis of medical images is well established; variability in training and attention to task among medical labelers may exacerbate this issue.
Noisy Cross-Validation splits the training data into halves, and has been shown to identify low-quality labels in computer vision tasks.
In this work we introduce Stratified Noisy Cross-Validation (SNCV), an extension of noisy cross validation.
arXiv Detail & Related papers (2020-09-22T23:32:59Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.