Learning Online for Unified Segmentation and Tracking Models
- URL: http://arxiv.org/abs/2111.06994v1
- Date: Fri, 12 Nov 2021 23:52:59 GMT
- Title: Learning Online for Unified Segmentation and Tracking Models
- Authors: Tianyu Zhu, Rongkai Ma, Mehrtash Harandi and Tom Drummond
- Abstract summary: TrackMLP is a novel meta-learning method optimized to learn from only partial information.
We show that our model achieves state-of-the-art performance and tangible improvement over competing models.
- Score: 30.146300294418516
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tracking requires building a discriminative model for the target in the
inference stage. An effective way to achieve this is online learning, which can
comfortably outperform models that are only trained offline. Recent research
shows that visual tracking benefits significantly from the unification of
visual tracking and segmentation due to its pixel-level discrimination.
However, it imposes a great challenge to perform online learning for such a
unified model. A segmentation model cannot easily learn from prior information
given in the visual tracking scenario. In this paper, we propose TrackMLP: a
novel meta-learning method optimized to learn from only partial information to
resolve the imposed challenge. Our model is capable of extensively exploiting
limited prior information hence possesses much stronger target-background
discriminability than other online learning methods. Empirically, we show that
our model achieves state-of-the-art performance and tangible improvement over
competing models. Our model achieves improved average overlaps of66.0%,67.1%,
and68.5% in VOT2019, VOT2018, and VOT2016 datasets, which are 6.4%,7.3%,
and6.4% higher than our baseline. Code will be made publicly available.
Related papers
- Getting More Juice Out of the SFT Data: Reward Learning from Human Demonstration Improves SFT for LLM Alignment [65.15914284008973]
We propose to leverage an Inverse Reinforcement Learning (IRL) technique to simultaneously build an reward model and a policy model.
We show that the proposed algorithms converge to the stationary solutions of the IRL problem.
Our results indicate that it is beneficial to leverage reward learning throughout the entire alignment process.
arXiv Detail & Related papers (2024-05-28T07:11:05Z) - An Information Theoretic Approach to Machine Unlearning [45.600917449314444]
Key challenge in unlearning is forgetting the necessary data in a timely manner, while preserving model performance.
In this work, we address the zero-shot unlearning scenario, whereby an unlearning algorithm must be able to remove data given only a trained model and the data to be forgotten.
We derive a simple but principled zero-shot unlearning method based on the geometry of the model.
arXiv Detail & Related papers (2024-02-02T13:33:30Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
We make empirical studies of state-of-the-art UniDA methods using foundation models.
We introduce textitCLIP distillation, a parameter-free method specifically designed to distill target knowledge from CLIP models.
Although simple, our method outperforms previous approaches in most benchmark tasks.
arXiv Detail & Related papers (2023-05-18T16:28:29Z) - Boosting Visual-Language Models by Exploiting Hard Samples [126.35125029639168]
HELIP is a cost-effective strategy tailored to enhance the performance of existing CLIP models.
Our method allows for effortless integration with existing models' training pipelines.
On comprehensive benchmarks, HELIP consistently boosts existing models to achieve leading performance.
arXiv Detail & Related papers (2023-05-09T07:00:17Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Offline Q-Learning on Diverse Multi-Task Data Both Scales And
Generalizes [100.69714600180895]
offline Q-learning algorithms exhibit strong performance that scales with model capacity.
We train a single policy on 40 games with near-human performance using up-to 80 million parameter networks.
Compared to return-conditioned supervised approaches, offline Q-learning scales similarly with model capacity and has better performance, especially when the dataset is suboptimal.
arXiv Detail & Related papers (2022-11-28T08:56:42Z) - Distill on the Go: Online knowledge distillation in self-supervised
learning [1.1470070927586016]
Recent works have shown that wider and deeper models benefit more from self-supervised learning than smaller models.
We propose Distill-on-the-Go (DoGo), a self-supervised learning paradigm using single-stage online knowledge distillation.
Our results show significant performance gain in the presence of noisy and limited labels.
arXiv Detail & Related papers (2021-04-20T09:59:23Z) - Few-Shot Lifelong Learning [35.05196800623617]
Few-Shot Lifelong Learning enables deep learning models to perform lifelong/continual learning on few-shot data.
Our method selects very few parameters from the model for training every new set of classes instead of training the full model.
We experimentally show that our method significantly outperforms existing methods on the miniImageNet, CIFAR-100, and CUB-200 datasets.
arXiv Detail & Related papers (2021-03-01T13:26:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.