Bolstering Stochastic Gradient Descent with Model Building
- URL: http://arxiv.org/abs/2111.07058v4
- Date: Wed, 13 Mar 2024 10:20:14 GMT
- Title: Bolstering Stochastic Gradient Descent with Model Building
- Authors: S. Ilker Birbil, Ozgur Martin, Gonenc Onay, Figen Oztoprak
- Abstract summary: gradient descent method and its variants constitute the core optimization algorithms that achieve good convergence rates.
We propose an alternative approach to line search by using a new algorithm based on forward step model building.
We show that the proposed algorithm achieves faster convergence and better generalization in well-known test problems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stochastic gradient descent method and its variants constitute the core
optimization algorithms that achieve good convergence rates for solving machine
learning problems. These rates are obtained especially when these algorithms
are fine-tuned for the application at hand. Although this tuning process can
require large computational costs, recent work has shown that these costs can
be reduced by line search methods that iteratively adjust the step length. We
propose an alternative approach to stochastic line search by using a new
algorithm based on forward step model building. This model building step
incorporates second-order information that allows adjusting not only the step
length but also the search direction. Noting that deep learning model
parameters come in groups (layers of tensors), our method builds its model and
calculates a new step for each parameter group. This novel diagonalization
approach makes the selected step lengths adaptive. We provide convergence rate
analysis, and experimentally show that the proposed algorithm achieves faster
convergence and better generalization in well-known test problems. More
precisely, SMB requires less tuning, and shows comparable performance to other
adaptive methods.
Related papers
- Tuning-Free Bilevel Optimization: New Algorithms and Convergence Analysis [21.932550214810533]
We propose two novel tuning-free algorithms, D-TFBO and S-TFBO.
D-TFBO employs a double-loop structure with stepsizes adaptively adjusted by the "inverse of cumulative gradient norms" strategy.
S-TFBO features a simpler fully single-loop structure that updates three variables simultaneously with a theory-motivated joint design of adaptive stepsizes for all variables.
arXiv Detail & Related papers (2024-10-07T15:50:30Z) - Stochastic Ratios Tracking Algorithm for Large Scale Machine Learning
Problems [0.7614628596146599]
We propose a novel algorithm for adaptive step length selection in the classical SGD framework.
Under reasonable conditions, the algorithm produces step lengths in line with well-established theoretical requirements.
We show that the algorithm can generate step lengths comparable to the best step length obtained from manual tuning.
arXiv Detail & Related papers (2023-05-17T06:22:11Z) - Online Learning Under A Separable Stochastic Approximation Framework [20.26530917721778]
We propose an online learning algorithm for a class of machine learning models under a separable approximation framework.
We show that the proposed algorithm produces more robust and test performance when compared to other popular learning algorithms.
arXiv Detail & Related papers (2023-05-12T13:53:03Z) - STORM+: Fully Adaptive SGD with Momentum for Nonconvex Optimization [74.1615979057429]
We investigate non-batch optimization problems where the objective is an expectation over smooth loss functions.
Our work builds on the STORM algorithm, in conjunction with a novel approach to adaptively set the learning rate and momentum parameters.
arXiv Detail & Related papers (2021-11-01T15:43:36Z) - Unified Convergence Analysis for Adaptive Optimization with Moving Average Estimator [75.05106948314956]
We show that an increasing large momentum parameter for the first-order moment is sufficient for adaptive scaling.
We also give insights for increasing the momentum in a stagewise manner in accordance with stagewise decreasing step size.
arXiv Detail & Related papers (2021-04-30T08:50:24Z) - Self-Tuning Stochastic Optimization with Curvature-Aware Gradient
Filtering [53.523517926927894]
We explore the use of exact per-sample Hessian-vector products and gradients to construct self-tuning quadratics.
We prove that our model-based procedure converges in noisy gradient setting.
This is an interesting step for constructing self-tuning quadratics.
arXiv Detail & Related papers (2020-11-09T22:07:30Z) - Learning to solve TV regularized problems with unrolled algorithms [18.241062505073234]
Total Variation (TV) is a popular regularization strategy that promotes piece-wise constant signals.
We develop and characterize two approaches to do so, describe their benefits and limitations, and discuss the regime where they can actually improve over iterative procedures.
arXiv Detail & Related papers (2020-10-19T14:19:02Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z) - Balancing Rates and Variance via Adaptive Batch-Size for Stochastic
Optimization Problems [120.21685755278509]
In this work, we seek to balance the fact that attenuating step-size is required for exact convergence with the fact that constant step-size learns faster in time up to an error.
Rather than fixing the minibatch the step-size at the outset, we propose to allow parameters to evolve adaptively.
arXiv Detail & Related papers (2020-07-02T16:02:02Z) - Optimizing generalization on the train set: a novel gradient-based
framework to train parameters and hyperparameters simultaneously [0.0]
Generalization is a central problem in Machine Learning.
We present a novel approach based on a new measure of risk that allows us to develop novel fully automatic procedures for generalization.
arXiv Detail & Related papers (2020-06-11T18:04:36Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.