Tuning-Free Bilevel Optimization: New Algorithms and Convergence Analysis
- URL: http://arxiv.org/abs/2410.05140v2
- Date: Tue, 8 Oct 2024 21:38:43 GMT
- Title: Tuning-Free Bilevel Optimization: New Algorithms and Convergence Analysis
- Authors: Yifan Yang, Hao Ban, Minhui Huang, Shiqian Ma, Kaiyi Ji,
- Abstract summary: We propose two novel tuning-free algorithms, D-TFBO and S-TFBO.
D-TFBO employs a double-loop structure with stepsizes adaptively adjusted by the "inverse of cumulative gradient norms" strategy.
S-TFBO features a simpler fully single-loop structure that updates three variables simultaneously with a theory-motivated joint design of adaptive stepsizes for all variables.
- Score: 21.932550214810533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bilevel optimization has recently attracted considerable attention due to its abundant applications in machine learning problems. However, existing methods rely on prior knowledge of problem parameters to determine stepsizes, resulting in significant effort in tuning stepsizes when these parameters are unknown. In this paper, we propose two novel tuning-free algorithms, D-TFBO and S-TFBO. D-TFBO employs a double-loop structure with stepsizes adaptively adjusted by the "inverse of cumulative gradient norms" strategy. S-TFBO features a simpler fully single-loop structure that updates three variables simultaneously with a theory-motivated joint design of adaptive stepsizes for all variables. We provide a comprehensive convergence analysis for both algorithms and show that D-TFBO and S-TFBO respectively require $O(\frac{1}{\epsilon})$ and $O(\frac{1}{\epsilon}\log^4(\frac{1}{\epsilon}))$ iterations to find an $\epsilon$-accurate stationary point, (nearly) matching their well-tuned counterparts using the information of problem parameters. Experiments on various problems show that our methods achieve performance comparable to existing well-tuned approaches, while being more robust to the selection of initial stepsizes. To the best of our knowledge, our methods are the first to completely eliminate the need for stepsize tuning, while achieving theoretical guarantees.
Related papers
- Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - BiSLS/SPS: Auto-tune Step Sizes for Stable Bi-level Optimization [33.082961718280245]
Existing algorithms involve two coupled learning rates that can be affected by approximation errors when computing hypergradients.
We investigate the use of adaptive step-size methods, namely line search (SLS) and Polyak step size (SPS), for computing both the upper and lower-level learning rates.
New algorithms, which are available in both SGD and Adam versions, can find large learning rates with minimal tuning and converge faster than corresponding vanilla BO algorithms.
arXiv Detail & Related papers (2023-05-30T00:37:50Z) - Dynamical softassign and adaptive parameter tuning for graph matching [0.7456521449098222]
We study a unified framework for graph matching problems called the constrained gradient algorithms.
Our contributed adaptive step size parameter can guarantee the underlying algorithms' convergence.
We propose a novel graph matching algorithm: the softassign constrained gradient method.
arXiv Detail & Related papers (2022-08-17T11:25:03Z) - Formal guarantees for heuristic optimization algorithms used in machine
learning [6.978625807687497]
Gradient Descent (SGD) and its variants have become the dominant methods in the large-scale optimization machine learning (ML) problems.
We provide formal guarantees of a few convex optimization methods and proposing improved algorithms.
arXiv Detail & Related papers (2022-07-31T19:41:22Z) - A Fully Single Loop Algorithm for Bilevel Optimization without Hessian
Inverse [121.54116938140754]
We propose a new Hessian inverse free Fully Single Loop Algorithm for bilevel optimization problems.
We show that our algorithm converges with the rate of $O(epsilon-2)$.
arXiv Detail & Related papers (2021-12-09T02:27:52Z) - Bolstering Stochastic Gradient Descent with Model Building [0.0]
gradient descent method and its variants constitute the core optimization algorithms that achieve good convergence rates.
We propose an alternative approach to line search by using a new algorithm based on forward step model building.
We show that the proposed algorithm achieves faster convergence and better generalization in well-known test problems.
arXiv Detail & Related papers (2021-11-13T06:54:36Z) - BiAdam: Fast Adaptive Bilevel Optimization Methods [104.96004056928474]
Bilevel optimization has attracted increased interest in machine learning due to its many applications.
We provide a useful analysis framework for both the constrained and unconstrained optimization.
arXiv Detail & Related papers (2021-06-21T20:16:40Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z) - Balancing Rates and Variance via Adaptive Batch-Size for Stochastic
Optimization Problems [120.21685755278509]
In this work, we seek to balance the fact that attenuating step-size is required for exact convergence with the fact that constant step-size learns faster in time up to an error.
Rather than fixing the minibatch the step-size at the outset, we propose to allow parameters to evolve adaptively.
arXiv Detail & Related papers (2020-07-02T16:02:02Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.