論文の概要: Towards One Shot Search Space Poisoning in Neural Architecture Search
- arxiv url: http://arxiv.org/abs/2111.07138v1
- Date: Sat, 13 Nov 2021 16:07:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-17 12:51:01.582998
- Title: Towards One Shot Search Space Poisoning in Neural Architecture Search
- Title(参考訳): ニューラル・アーキテクチャ・サーチにおける一発探索空間中毒に向けて
- Authors: Nayan Saxena, Robert Wu and Rohan Jain
- Abstract要約: ニューラルネットワーク探索 (NAS) アルゴリズムであるENAS (Efficient NAS) の, 元の検索空間に対するデータ中毒攻撃に対するロバスト性を評価する。
我々は、ENASコントローラの設計上の欠陥を利用して、分類タスクにおける予測性能を低下させる手法を実証的に実証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We evaluate the robustness of a Neural Architecture Search (NAS) algorithm
known as Efficient NAS (ENAS) against data agnostic poisoning attacks on the
original search space with carefully designed ineffective operations. We
empirically demonstrate how our one shot search space poisoning approach
exploits design flaws in the ENAS controller to degrade predictive performance
on classification tasks. With just two poisoning operations injected into the
search space, we inflate prediction error rates for child networks upto 90% on
the CIFAR-10 dataset.
- Abstract(参考訳): ニューラルネットワーク探索(NAS)アルゴリズムであるENAS(Efficient NAS)の,探索空間へのデータ非依存的中毒攻撃に対するロバスト性を,慎重に設計された非効率な操作で評価する。
我々は、ENASコントローラの設計上の欠陥を利用して、分類タスクにおける予測性能を低下させる手法を実証的に実証した。
検索空間に2つの毒素処理を注入することで、cifar-10データセット上の子ネットワークの予測エラー率を最大90%まで膨らませる。
関連論文リスト
- DONNAv2 -- Lightweight Neural Architecture Search for Vision tasks [6.628409795264665]
計算効率の良いニューラルアーキテクチャ蒸留 - DONNAv2 のための次世代ニューラルアーキテクチャ設計について述べる。
DONNAv2は、より大きなデータセットに対して、DONNAの計算コストを10倍削減する。
NASサーチスペースの品質を向上させるため、DONNAv2はブロック知識蒸留フィルタを利用して推論コストの高いブロックを除去する。
論文 参考訳(メタデータ) (2023-09-26T04:48:50Z) - DCP-NAS: Discrepant Child-Parent Neural Architecture Search for 1-bit
CNNs [53.82853297675979]
バイナリ重みとアクティベーションを備えた1ビット畳み込みニューラルネットワーク(CNN)は、リソース制限された組み込みデバイスの可能性を示している。
自然なアプローチの1つは、NASの計算とメモリコストを削減するために1ビットCNNを使用することである。
本稿では,1ビットCNNを効率的に探索するためにDCP-NAS(Disrepant Child-Parent Neural Architecture Search)を提案する。
論文 参考訳(メタデータ) (2023-06-27T11:28:29Z) - PRE-NAS: Predictor-assisted Evolutionary Neural Architecture Search [34.06028035262884]
我々は、新しい進化型NAS戦略、Predictor-assisted E-NAS(PRE-NAS)を提案する。
Pre-NASは新しい進化的探索戦略を活用し、世代ごとに高忠実度重みの継承を統合する。
NAS-Bench-201とDARTSの探索実験により、Pre-NASは最先端のNAS法より優れていることが示された。
論文 参考訳(メタデータ) (2022-04-27T06:40:39Z) - $\beta$-DARTS: Beta-Decay Regularization for Differentiable Architecture
Search [85.84110365657455]
本研究では,DARTSに基づくNAS探索過程を正規化するために,ベータデカイと呼ばれるシンプルだが効率的な正規化手法を提案する。
NAS-Bench-201の実験結果から,提案手法は探索過程の安定化に有効であり,探索されたネットワークを異なるデータセット間で転送しやすくする。
論文 参考訳(メタデータ) (2022-03-03T11:47:14Z) - Poisoning the Search Space in Neural Architecture Search [0.0]
我々は,探索空間におけるデータ中毒攻撃に対して,効率的なNASと呼ばれるアルゴリズムのロバスト性を評価する。
以上の結果から,NASを用いたアーキテクチャ探索の課題に対する洞察が得られた。
論文 参考訳(メタデータ) (2021-06-28T05:45:57Z) - BossNAS: Exploring Hybrid CNN-transformers with Block-wisely
Self-supervised Neural Architecture Search [100.28980854978768]
BossNAS(Block-wisely Self-supervised Neural Architecture Search)の紹介
探索空間をブロックに分類し、アンサンブルブートストラッピングと呼ばれる新しい自己教師型トレーニングスキームを用いて各ブロックを個別に訓練する。
また,検索可能なダウンサンプリング位置を持つファブリック型cnnトランスフォーマ検索空間であるhytra search spaceを提案する。
論文 参考訳(メタデータ) (2021-03-23T10:05:58Z) - Binarized Neural Architecture Search for Efficient Object Recognition [120.23378346337311]
バイナリ化されたニューラルネットワークサーチ(BNAS)は、エッジコンピューティング用の組み込みデバイスにおいて、膨大な計算コストを削減するために、極めて圧縮されたモデルを生成する。
9,6.53%対9,7.22%の精度はCIFAR-10データセットで達成されるが、かなり圧縮されたモデルで、最先端のPC-DARTSよりも40%速い検索が可能である。
論文 参考訳(メタデータ) (2020-09-08T15:51:23Z) - Accuracy Prediction with Non-neural Model for Neural Architecture Search [185.0651567642238]
精度予測に非神経モデルを用いる別の手法について検討する。
我々は、ニューラルネットワーク探索(NAS)の予測因子として、勾配向上決定木(GBDT)を活用する。
NASBench-101とImageNetの実験は、NASの予測器としてGBDTを使用することの有効性を示した。
論文 参考訳(メタデータ) (2020-07-09T13:28:49Z) - DrNAS: Dirichlet Neural Architecture Search [88.56953713817545]
ディリクレ分布をモデルとした連続緩和型混合重みをランダム変数として扱う。
最近開発されたパスワイズ微分により、ディリクレパラメータは勾配に基づく一般化で容易に最適化できる。
微分可能なNASの大きなメモリ消費を軽減するために, 単純かつ効果的な進行学習方式を提案する。
論文 参考訳(メタデータ) (2020-06-18T08:23:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。