Keyphrase Extraction Using Neighborhood Knowledge Based on Word
Embeddings
- URL: http://arxiv.org/abs/2111.07198v1
- Date: Sat, 13 Nov 2021 21:48:18 GMT
- Title: Keyphrase Extraction Using Neighborhood Knowledge Based on Word
Embeddings
- Authors: Yuchen Liang and Mohammed J. Zaki
- Abstract summary: We enhance the graph-based ranking model by leveraging word embeddings as background knowledge to add semantic information to the inter-word graph.
Our approach is evaluated on established benchmark datasets and empirical results show that the word embedding neighborhood information improves the model performance.
- Score: 17.198907789163123
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Keyphrase extraction is the task of finding several interesting phrases in a
text document, which provide a list of the main topics within the document.
Most existing graph-based models use co-occurrence links as cohesion indicators
to model the relationship of syntactic elements. However, a word may have
different forms of expression within the document, and may have several
synonyms as well. Simply using co-occurrence information cannot capture this
information. In this paper, we enhance the graph-based ranking model by
leveraging word embeddings as background knowledge to add semantic information
to the inter-word graph. Our approach is evaluated on established benchmark
datasets and empirical results show that the word embedding neighborhood
information improves the model performance.
Related papers
- CAST: Corpus-Aware Self-similarity Enhanced Topic modelling [16.562349140796115]
We introduce CAST: Corpus-Aware Self-similarity Enhanced Topic modelling, a novel topic modelling method.
We find self-similarity to be an effective metric to prevent functional words from acting as candidate topic words.
Our approach significantly enhances the coherence and diversity of generated topics, as well as the topic model's ability to handle noisy data.
arXiv Detail & Related papers (2024-10-19T15:27:11Z) - Hypergraph based Understanding for Document Semantic Entity Recognition [65.84258776834524]
We build a novel hypergraph attention document semantic entity recognition framework, HGA, which uses hypergraph attention to focus on entity boundaries and entity categories at the same time.
Our results on FUNSD, CORD, XFUNDIE show that our method can effectively improve the performance of semantic entity recognition tasks.
arXiv Detail & Related papers (2024-07-09T14:35:49Z) - Conversational Semantic Parsing using Dynamic Context Graphs [68.72121830563906]
We consider the task of conversational semantic parsing over general purpose knowledge graphs (KGs) with millions of entities, and thousands of relation-types.
We focus on models which are capable of interactively mapping user utterances into executable logical forms.
arXiv Detail & Related papers (2023-05-04T16:04:41Z) - Heterogeneous Graph Neural Networks for Keyphrase Generation [13.841525616800908]
We propose a novel graph-based method that can capture explicit knowledge from related references.
Our model first retrieves some document-keyphrases pairs similar to the source document from a pre-defined index as references.
To guide the decoding process, a hierarchical attention and copy mechanism is introduced, which directly copies appropriate words from both the source document and its references.
arXiv Detail & Related papers (2021-09-10T07:17:07Z) - More Than Words: Collocation Tokenization for Latent Dirichlet
Allocation Models [71.42030830910227]
We propose a new metric for measuring the clustering quality in settings where the models differ.
We show that topics trained with merged tokens result in topic keys that are clearer, more coherent, and more effective at distinguishing topics than those unmerged models.
arXiv Detail & Related papers (2021-08-24T14:08:19Z) - Keyphrase Extraction with Dynamic Graph Convolutional Networks and
Diversified Inference [50.768682650658384]
Keyphrase extraction (KE) aims to summarize a set of phrases that accurately express a concept or a topic covered in a given document.
Recent Sequence-to-Sequence (Seq2Seq) based generative framework is widely used in KE task, and it has obtained competitive performance on various benchmarks.
In this paper, we propose to adopt the Dynamic Graph Convolutional Networks (DGCN) to solve the above two problems simultaneously.
arXiv Detail & Related papers (2020-10-24T08:11:23Z) - Leveraging Graph to Improve Abstractive Multi-Document Summarization [50.62418656177642]
We develop a neural abstractive multi-document summarization (MDS) model which can leverage well-known graph representations of documents.
Our model utilizes graphs to encode documents in order to capture cross-document relations, which is crucial to summarizing long documents.
Our model can also take advantage of graphs to guide the summary generation process, which is beneficial for generating coherent and concise summaries.
arXiv Detail & Related papers (2020-05-20T13:39:47Z) - Comparative Analysis of Word Embeddings for Capturing Word Similarities [0.0]
Distributed language representation has become the most widely used technique for language representation in various natural language processing tasks.
Most of the natural language processing models that are based on deep learning techniques use already pre-trained distributed word representations, commonly called word embeddings.
selecting the appropriate word embeddings is a perplexing task since the projected embedding space is not intuitive to humans.
arXiv Detail & Related papers (2020-05-08T01:16:03Z) - Learning to Select Bi-Aspect Information for Document-Scale Text Content
Manipulation [50.01708049531156]
We focus on a new practical task, document-scale text content manipulation, which is the opposite of text style transfer.
In detail, the input is a set of structured records and a reference text for describing another recordset.
The output is a summary that accurately describes the partial content in the source recordset with the same writing style of the reference.
arXiv Detail & Related papers (2020-02-24T12:52:10Z) - Keyphrase Extraction with Span-based Feature Representations [13.790461555410747]
Keyphrases are capable of providing semantic metadata characterizing documents.
Three approaches to address keyphrase extraction: (i) traditional two-step ranking method, (ii) sequence labeling and (iii) generation using neural networks.
In this paper, we propose a novelty Span Keyphrase Extraction model that extracts span-based feature representation of keyphrase directly from all the content tokens.
arXiv Detail & Related papers (2020-02-13T09:48:31Z) - Document Network Projection in Pretrained Word Embedding Space [7.455546102930911]
We present Regularized Linear Embedding (RLE), a novel method that projects a collection of linked documents into a pretrained word embedding space.
We leverage a matrix of pairwise similarities providing complementary information (e.g., the network proximity of two documents in a citation graph)
The document representations can help to solve many information retrieval tasks, such as recommendation, classification and clustering.
arXiv Detail & Related papers (2020-01-16T10:16:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.