TEA: A Sequential Recommendation Framework via Temporally Evolving
Aggregations
- URL: http://arxiv.org/abs/2111.07378v1
- Date: Sun, 14 Nov 2021 15:54:23 GMT
- Title: TEA: A Sequential Recommendation Framework via Temporally Evolving
Aggregations
- Authors: Zijian Li, Ruichu Cai, Fengzhu Wu, Sili Zhang, Hao Gu, Yuexing Hao,
Yuguang
- Abstract summary: We propose a novel sequential recommendation framework based on dynamic user-item heterogeneous graphs.
We exploit the conditional random field to aggregate the heterogeneous graphs and user behaviors for probability estimation.
We provide scalable and flexible implementations of the proposed framework.
- Score: 12.626079984394766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequential recommendation aims to choose the most suitable items for a user
at a specific timestamp given historical behaviors. Existing methods usually
model the user behavior sequence based on the transition-based methods like
Markov Chain. However, these methods also implicitly assume that the users are
independent of each other without considering the influence between users. In
fact, this influence plays an important role in sequence recommendation since
the behavior of a user is easily affected by others. Therefore, it is desirable
to aggregate both user behaviors and the influence between users, which are
evolved temporally and involved in the heterogeneous graph of users and items.
In this paper, we incorporate dynamic user-item heterogeneous graphs to propose
a novel sequential recommendation framework. As a result, the historical
behaviors as well as the influence between users can be taken into
consideration. To achieve this, we firstly formalize sequential recommendation
as a problem to estimate conditional probability given temporal dynamic
heterogeneous graphs and user behavior sequences. After that, we exploit the
conditional random field to aggregate the heterogeneous graphs and user
behaviors for probability estimation, and employ the pseudo-likelihood approach
to derive a tractable objective function. Finally, we provide scalable and
flexible implementations of the proposed framework. Experimental results on
three real-world datasets not only demonstrate the effectiveness of our
proposed method but also provide some insightful discoveries on sequential
recommendation.
Related papers
- USE: Dynamic User Modeling with Stateful Sequence Models [26.74966828348815]
User Stateful Embedding (USE) generates user embeddings without the need for exhaustive reprocessing.
We introduce a novel training objective named future W-behavior prediction to transcend the limitations of next-token prediction.
We conduct experiments on 8 downstream tasks using Snapchat users' behavioral logs in both static (i.e., fixed user behavior sequences) and dynamic (i.e. periodically updated user behavior sequences) settings.
arXiv Detail & Related papers (2024-03-20T07:05:19Z) - Deep Group Interest Modeling of Full Lifelong User Behaviors for CTR Prediction [32.35797628133921]
Deep Group Interest Network (DGIN) is an end-to-end method to model the user's entire behavior history.
DGIN grouping reduces the behavior length significantly, from O(104) to O(102)
We identify a subset of behaviors that share the same item_id with the candidate item from the lifelong behavior sequence.
arXiv Detail & Related papers (2023-11-15T06:36:11Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
Sequential recommender models learn to predict the next items a user is likely to interact with based on his/her interaction history on the platform.
Most sequential recommenders however lack a higher-level understanding of user intents, which often drive user behaviors online.
Intent modeling is thus critical for understanding users and optimizing long-term user experience.
arXiv Detail & Related papers (2022-11-17T19:00:24Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
We develop a hierarchical Bayesian model termed ordinal graph factor analysis (OGFA), which jointly models user-item and user-user interactions.
OGFA not only achieves good recommendation performance, but also extracts interpretable latent factors corresponding to representative user preferences.
We extend OGFA to ordinal graph gamma belief network, which is a multi-stochastic-layer deep probabilistic model.
arXiv Detail & Related papers (2022-09-12T09:19:22Z) - Multi-Behavior Sequential Recommendation with Temporal Graph Transformer [66.10169268762014]
We tackle the dynamic user-item relation learning with the awareness of multi-behavior interactive patterns.
We propose a new Temporal Graph Transformer (TGT) recommendation framework to jointly capture dynamic short-term and long-range user-item interactive patterns.
arXiv Detail & Related papers (2022-06-06T15:42:54Z) - Modeling Dynamic User Preference via Dictionary Learning for Sequential
Recommendation [133.8758914874593]
Capturing the dynamics in user preference is crucial to better predict user future behaviors because user preferences often drift over time.
Many existing recommendation algorithms -- including both shallow and deep ones -- often model such dynamics independently.
This paper considers the problem of embedding a user's sequential behavior into the latent space of user preferences.
arXiv Detail & Related papers (2022-04-02T03:23:46Z) - Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation [61.114580368455236]
User purchasing prediction with multi-behavior information remains a challenging problem for current recommendation systems.
We propose the concept of hyper meta-path to construct hyper meta-paths or hyper meta-graphs to explicitly illustrate the dependencies among different behaviors of a user.
Thanks to the recent success of graph contrastive learning, we leverage it to learn embeddings of user behavior patterns adaptively instead of assigning a fixed scheme to understand the dependencies among different behaviors.
arXiv Detail & Related papers (2021-09-07T04:28:09Z) - Sequence Adaptation via Reinforcement Learning in Recommender Systems [8.909115457491522]
We propose the SAR model, which learns the sequential patterns and adjusts the sequence length of user-item interactions in a personalized manner.
In addition, we optimize a joint loss function to align the accuracy of the sequential recommendations with the expected cumulative rewards of the critic network.
Our experimental evaluation on four real-world datasets demonstrates the superiority of our proposed model over several baseline approaches.
arXiv Detail & Related papers (2021-07-31T13:56:46Z) - Dynamic Graph Collaborative Filtering [64.87765663208927]
Dynamic recommendation is essential for recommender systems to provide real-time predictions based on sequential data.
Here we propose Dynamic Graph Collaborative Filtering (DGCF), a novel framework leveraging dynamic graphs to capture collaborative and sequential relations.
Our approach achieves higher performance when the dataset contains less action repetition, indicating the effectiveness of integrating dynamic collaborative information.
arXiv Detail & Related papers (2021-01-08T04:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.