Adaptive Cost-Sensitive Learning in Neural Networks for
Misclassification Cost Problems
- URL: http://arxiv.org/abs/2111.07382v1
- Date: Sun, 14 Nov 2021 16:19:11 GMT
- Title: Adaptive Cost-Sensitive Learning in Neural Networks for
Misclassification Cost Problems
- Authors: Ohad Volk, Gonen Singer
- Abstract summary: We design a new adaptive learning algorithm for misclassification cost problems.
Our algorithm bridges the difference between the class distributions between subgroups of samples in the training and test data sets with similar predicted probabilities.
We present empirical evidence that a deep neural network used with the proposed algorithm yields better cost results on several binary classification data sets that have class-imbalanced and class-balanced distributions compared to other alternative approaches.
- Score: 2.8935588665357077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We design a new adaptive learning algorithm for misclassification cost
problems that attempt to reduce the cost of misclassified instances derived
from the consequences of various errors. Our algorithm (adaptive cost sensitive
learning - AdaCSL) adaptively adjusts the loss function such that the
classifier bridges the difference between the class distributions between
subgroups of samples in the training and test data sets with similar predicted
probabilities (i.e., local training-test class distribution mismatch). We
provide some theoretical performance guarantees on the proposed algorithm and
present empirical evidence that a deep neural network used with the proposed
AdaCSL algorithm yields better cost results on several binary classification
data sets that have class-imbalanced and class-balanced distributions compared
to other alternative approaches.
Related papers
- Class-Imbalanced Complementary-Label Learning via Weighted Loss [8.934943507699131]
Complementary-label learning (CLL) is widely used in weakly supervised classification.
It faces a significant challenge in real-world datasets when confronted with class-imbalanced training samples.
We propose a novel problem setting that enables learning from class-imbalanced complementary labels for multi-class classification.
arXiv Detail & Related papers (2022-09-28T16:02:42Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
The paper proposes a family of communication efficient methods for distributed learning in heterogeneous environments.
One-shot approach, based on local computations at the users and a clustering based aggregation step at the server is shown to provide strong learning guarantees.
For strongly convex problems it is shown that, as long as the number of data points per user is above a threshold, the proposed approach achieves order-optimal mean-squared error rates in terms of the sample size.
arXiv Detail & Related papers (2022-09-22T09:04:10Z) - A Hybrid Approach for Binary Classification of Imbalanced Data [0.0]
We propose HADR, a hybrid approach with dimension reduction that consists of data block construction, dimentionality reduction, and ensemble learning.
We evaluate the performance on eight imbalanced public datasets in terms of recall, G-mean, and AUC.
arXiv Detail & Related papers (2022-07-06T15:18:41Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
We propose a novel class of deep predictors for classifying metric data on graphs within PAC-Bayes risk certification paradigm.
Building on the recent PAC-Bayes literature and data-dependent priors, this approach enables learning posterior distributions on the hypothesis space.
arXiv Detail & Related papers (2022-01-26T19:59:14Z) - Envelope Imbalance Learning Algorithm based on Multilayer Fuzzy C-means
Clustering and Minimum Interlayer discrepancy [14.339674126923903]
This paper proposes a deep instance envelope network-based imbalanced learning algorithm with the multilayer fuzzy c-means (MlFCM) and a minimum interlayer discrepancy mechanism based on the maximum mean discrepancy (MIDMD)
This algorithm can guarantee high quality balanced instances using a deep instance envelope network in the absence of prior knowledge.
arXiv Detail & Related papers (2021-11-02T04:59:57Z) - When in Doubt: Improving Classification Performance with Alternating
Normalization [57.39356691967766]
We introduce Classification with Alternating Normalization (CAN), a non-parametric post-processing step for classification.
CAN improves classification accuracy for challenging examples by re-adjusting their predicted class probability distribution.
We empirically demonstrate its effectiveness across a diverse set of classification tasks.
arXiv Detail & Related papers (2021-09-28T02:55:42Z) - Hybrid Ensemble optimized algorithm based on Genetic Programming for
imbalanced data classification [0.0]
We propose a hybrid ensemble algorithm based on Genetic Programming (GP) for two classes of imbalanced data classification.
Experimental results show the performance of the proposed method on the specified data sets in the size of the training set shows 40% and 50% better accuracy than other dimensions of the minority class prediction.
arXiv Detail & Related papers (2021-06-02T14:14:38Z) - Adaptive Sampling for Minimax Fair Classification [40.936345085421955]
We propose an adaptive sampling algorithm based on the principle of optimism, and derive theoretical bounds on its performance.
By deriving algorithm independent lower-bounds for a specific class of problems, we show that the performance achieved by our adaptive scheme cannot be improved in general.
arXiv Detail & Related papers (2021-03-01T04:58:27Z) - Unsupervised neural adaptation model based on optimal transport for
spoken language identification [54.96267179988487]
Due to the mismatch of statistical distributions of acoustic speech between training and testing sets, the performance of spoken language identification (SLID) could be drastically degraded.
We propose an unsupervised neural adaptation model to deal with the distribution mismatch problem for SLID.
arXiv Detail & Related papers (2020-12-24T07:37:19Z) - Generalized Zero-Shot Learning Via Over-Complete Distribution [79.5140590952889]
We propose to generate an Over-Complete Distribution (OCD) using Conditional Variational Autoencoder (CVAE) of both seen and unseen classes.
The effectiveness of the framework is evaluated using both Zero-Shot Learning and Generalized Zero-Shot Learning protocols.
arXiv Detail & Related papers (2020-04-01T19:05:28Z) - Identifying and Compensating for Feature Deviation in Imbalanced Deep
Learning [59.65752299209042]
We investigate learning a ConvNet under such a scenario.
We found that a ConvNet significantly over-fits the minor classes.
We propose to incorporate class-dependent temperatures (CDT) training ConvNet.
arXiv Detail & Related papers (2020-01-06T03:52:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.