Unbiased Max-Min Embedding Classification for Transductive Few-Shot Learning: Clustering and Classification Are All You Need
- URL: http://arxiv.org/abs/2503.22193v1
- Date: Fri, 28 Mar 2025 07:23:07 GMT
- Title: Unbiased Max-Min Embedding Classification for Transductive Few-Shot Learning: Clustering and Classification Are All You Need
- Authors: Yang Liu, Feixiang Liu, Jiale Du, Xinbo Gao, Jungong Han,
- Abstract summary: Few-shot learning enables models to generalize from only a few labeled examples.<n>We propose the Unbiased Max-Min Embedding Classification (UMMEC) Method, which addresses the key challenges in few-shot learning.<n>Our method significantly improves classification performance with minimal labeled data, advancing the state-of-the-art in annotatedL.
- Score: 83.10178754323955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural networks and supervised learning have achieved remarkable success in various fields but are limited by the need for large annotated datasets. Few-shot learning (FSL) addresses this limitation by enabling models to generalize from only a few labeled examples. Transductive few-shot learning (TFSL) enhances FSL by leveraging both labeled and unlabeled data, though it faces challenges like the hubness problem. To overcome these limitations, we propose the Unbiased Max-Min Embedding Classification (UMMEC) Method, which addresses the key challenges in few-shot learning through three innovative contributions. First, we introduce a decentralized covariance matrix to mitigate the hubness problem, ensuring a more uniform distribution of embeddings. Second, our method combines local alignment and global uniformity through adaptive weighting and nonlinear transformation, balancing intra-class clustering with inter-class separation. Third, we employ a Variational Sinkhorn Few-Shot Classifier to optimize the distances between samples and class prototypes, enhancing classification accuracy and robustness. These combined innovations allow the UMMEC method to achieve superior performance with minimal labeled data. Our UMMEC method significantly improves classification performance with minimal labeled data, advancing the state-of-the-art in TFSL.
Related papers
- An Enhanced Classification Method Based on Adaptive Multi-Scale Fusion for Long-tailed Multispectral Point Clouds [67.96583737413296]
We propose an enhanced classification method based on adaptive multi-scale fusion for MPCs with long-tailed distributions.
In the training set generation stage, a grid-balanced sampling strategy is designed to reliably generate training samples from sparse labeled datasets.
In the feature learning stage, a multi-scale feature fusion module is proposed to fuse shallow features of land-covers at different scales.
arXiv Detail & Related papers (2024-12-16T03:21:20Z) - Ensemble Methods for Sequence Classification with Hidden Markov Models [8.241486511994202]
We present a lightweight approach to sequence classification using Ensemble Methods for Hidden Markov Models (HMMs)
HMMs offer significant advantages in scenarios with imbalanced or smaller datasets due to their simplicity, interpretability, and efficiency.
Our ensemble-based scoring method enables the comparison of sequences of any length and improves performance on imbalanced datasets.
arXiv Detail & Related papers (2024-09-11T20:59:32Z) - DiTMoS: Delving into Diverse Tiny-Model Selection on Microcontrollers [34.282971510732736]
We introduce DiTMoS, a novel DNN training and inference framework with a selector-classifiers architecture.
A composition of weak models can exhibit high diversity and the union of them can significantly boost the accuracy upper bound.
We deploy DiTMoS on the Neucleo STM32F767ZI board and evaluate it based on three time-series datasets for human activity recognition, keywords spotting, and emotion recognition.
arXiv Detail & Related papers (2024-03-14T02:11:38Z) - P$^2$OT: Progressive Partial Optimal Transport for Deep Imbalanced
Clustering [16.723646401890495]
We propose a novel pseudo-labeling-based learning framework for deep clustering.
Our framework generates imbalance-aware pseudo-labels and learning from high-confident samples.
Experiments on various datasets, including a human-curated long-tailed CIFAR100, demonstrate the superiority of our method.
arXiv Detail & Related papers (2024-01-17T15:15:46Z) - Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
Semi-supervised learning (SSL) has been an active research topic for large-scale 3D scene understanding.
The existing SSL-based methods suffer from severe training bias due to class imbalance and long-tail distributions of the point cloud data.
We introduce a new decoupling optimization framework, which disentangles feature representation learning and classifier in an alternative optimization manner to shift the bias decision boundary effectively.
arXiv Detail & Related papers (2024-01-13T04:16:40Z) - An Adaptive Plug-and-Play Network for Few-Shot Learning [12.023266104119289]
Few-shot learning requires a model to classify new samples after learning from only a few samples.
Deep networks and complex metrics tend to induce overfitting, making it difficult to further improve the performance.
We propose plug-and-play model-adaptive resizer (MAR) and adaptive similarity metric (ASM) without any other losses.
arXiv Detail & Related papers (2023-02-18T13:25:04Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
Method for unsupervised meta-learning, CACTUs, is a clustering-based approach with pseudo-labeling.
This approach is model-agnostic and can be combined with supervised algorithms to learn from unlabeled data.
We prove that the core reason for this is lack of a clustering-friendly property in the embedding space.
arXiv Detail & Related papers (2022-09-27T19:04:36Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
In many real-world problems, collecting a large number of labeled samples is infeasible.
Few-shot learning is the dominant approach to address this issue, where the objective is to quickly adapt to novel categories in presence of a limited number of samples.
We propose a novel training mechanism that simultaneously enforces equivariance and invariance to a general set of geometric transformations.
arXiv Detail & Related papers (2021-03-01T21:14:33Z) - Attentional-Biased Stochastic Gradient Descent [74.49926199036481]
We present a provable method (named ABSGD) for addressing the data imbalance or label noise problem in deep learning.
Our method is a simple modification to momentum SGD where we assign an individual importance weight to each sample in the mini-batch.
ABSGD is flexible enough to combine with other robust losses without any additional cost.
arXiv Detail & Related papers (2020-12-13T03:41:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.