A distributed, plug-n-play algorithm for multi-robot applications with a
priori non-computable objective functions
- URL: http://arxiv.org/abs/2111.07441v1
- Date: Sun, 14 Nov 2021 20:40:00 GMT
- Title: A distributed, plug-n-play algorithm for multi-robot applications with a
priori non-computable objective functions
- Authors: Athanasios Ch. Kapoutsis, Savvas A. Chatzichristofis and Elias B.
Kosmatopoulos
- Abstract summary: In multi-robot applications, the user-defined objectives of the mission can be cast as a general optimization problem.
Standard gradient-descent-like algorithms are not applicable to these problems.
We introduce a new algorithm that carefully designs each robot's subcost function, the optimization of which can accomplish the overall team objective.
- Score: 2.2452191187045383
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a distributed algorithm applicable to a wide range of
practical multi-robot applications. In such multi-robot applications, the
user-defined objectives of the mission can be cast as a general optimization
problem, without explicit guidelines of the subtasks per different robot. Owing
to the unknown environment, unknown robot dynamics, sensor nonlinearities,
etc., the analytic form of the optimization cost function is not available a
priori. Therefore, standard gradient-descent-like algorithms are not applicable
to these problems. To tackle this, we introduce a new algorithm that carefully
designs each robot's subcost function, the optimization of which can accomplish
the overall team objective. Upon this transformation, we propose a distributed
methodology based on the cognitive-based adaptive optimization (CAO) algorithm,
that is able to approximate the evolution of each robot's cost function and to
adequately optimize its decision variables (robot actions). The latter can be
achieved by online learning only the problem-specific characteristics that
affect the accomplishment of mission objectives. The overall, low-complexity
algorithm can straightforwardly incorporate any kind of operational constraint,
is fault tolerant, and can appropriately tackle time-varying cost functions. A
cornerstone of this approach is that it shares the same convergence
characteristics as those of block coordinate descent algorithms. The proposed
algorithm is evaluated in three heterogeneous simulation set-ups under multiple
scenarios, against both general-purpose and problem-specific algorithms. Source
code is available at
\url{https://github.com/athakapo/A-distributed-plug-n-play-algorithm-for-multi-robot-applications}.
Related papers
- Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
This paper supports robotic parts-to-picker operations in warehousing by optimizing order-workstation assignments, item-pod assignments and the schedule of order fulfillment at workstations.
We solve it via large-scale neighborhood search, with a novel learn-then-optimize approach to subproblem generation.
In collaboration with Amazon Robotics, we show that our model and algorithm generate much stronger solutions for practical problems than state-of-the-art approaches.
arXiv Detail & Related papers (2024-08-29T20:22:22Z) - Exploratory Landscape Analysis for Mixed-Variable Problems [0.7252027234425334]
We provide the means to compute exploratory landscape features for mixed-variable problems where the decision space is a mixture of continuous, binary, integer, and categorical variables.
To further highlight their merit for practical applications, we design and conduct an automated algorithm selection study.
Our trained algorithm selector is able to close the gap between the single best and the virtual best solver by 57.5% over all benchmark problems.
arXiv Detail & Related papers (2024-02-26T10:19:23Z) - A Conflict-Aware Optimal Goal Assignment Algorithm for Multi-Robot
Systems [6.853165736531941]
A multi-robot application aims to assign a unique goal to each robot while ensuring collision-free paths.
We propose an efficient conflict-guided method to compute the next best assignment.
We extensively evaluate our algorithm for up to a hundred robots on several benchmark workspaces.
arXiv Detail & Related papers (2024-02-19T19:04:19Z) - CURE: Simulation-Augmented Auto-Tuning in Robotics [15.943773140929856]
This paper proposes CURE -- a method that identifies causally relevant configuration options.
CURE abstracts the causal relationships between various configuration options and robot performance objectives.
We demonstrate the effectiveness and transferability of CURE by conducting experiments in both physical robots and simulation.
arXiv Detail & Related papers (2024-02-08T04:27:14Z) - Scalable Mechanism Design for Multi-Agent Path Finding [87.40027406028425]
Multi-Agent Path Finding (MAPF) involves determining paths for multiple agents to travel simultaneously and collision-free through a shared area toward given goal locations.
Finding an optimal solution is often computationally infeasible, making the use of approximate, suboptimal algorithms essential.
We introduce the problem of scalable mechanism design for MAPF and propose three strategyproof mechanisms, two of which even use approximate MAPF algorithms.
arXiv Detail & Related papers (2024-01-30T14:26:04Z) - Contribution \`a l'Optimisation d'un Comportement Collectif pour un
Groupe de Robots Autonomes [0.0]
This thesis studies the domain of collective robotics, and more particularly the optimization problems of multirobot systems.
The first contribution is the use of the Butterfly Algorithm Optimization (BOA) to solve the Unknown Area Exploration problem.
The second contribution is the development of a new simulation framework for benchmarking dynamic incremental problems in robotics.
arXiv Detail & Related papers (2023-06-10T21:49:08Z) - Intelligent Trajectory Design for RIS-NOMA aided Multi-robot
Communications [59.34642007625687]
The goal is to maximize the sum-rate of whole trajectories for multi-robot system by jointly optimizing trajectories and NOMA decoding orders of robots.
An integrated machine learning (ML) scheme is proposed, which combines long short-term memory (LSTM)-autoregressive integrated moving average (ARIMA) model and dueling double deep Q-network (D$3$QN) algorithm.
arXiv Detail & Related papers (2022-05-03T17:14:47Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - New Fusion Algorithm provides an alternative approach to Robotic Path
planning [0.0]
This paper presents a new and efficient fusion algorithm for solving the path planning problem in a custom 2D environment.
The new fusion algorithm is feasible and superior in smoothness performance and can satisfy as a time-efficient and cheaper alternative to conventional A* strategies of path planning.
arXiv Detail & Related papers (2020-06-06T17:52:00Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
Resource allocation and transceivers in wireless networks are usually designed by solving optimization problems.
In this article, we introduce unsupervised and reinforced-unsupervised learning frameworks for solving both variable and functional optimization problems.
arXiv Detail & Related papers (2020-01-03T11:01:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.