論文の概要: CoReS: Compatible Representations via Stationarity
- arxiv url: http://arxiv.org/abs/2111.07632v1
- Date: Mon, 15 Nov 2021 09:35:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-16 14:33:00.049282
- Title: CoReS: Compatible Representations via Stationarity
- Title(参考訳): cores: stationarity による互換表現
- Authors: Niccolo Biondi and Federico Pernici and Matteo Bruni and Alberto Del
Bimbo
- Abstract要約: 本稿では,従来学習されていた特徴表現モデルとテキスト互換な内部特徴表現モデルを学習するための新しい手法を提案する。
定常性(CoReS)によるコンパチブル表現(Compatible Representations)と呼ばれる我々の手法は、学習された表現モデルに定常性を促すことによって、互換性を実現する。
提案手法は,互換性のある機能を実現するための最先端の手法を,大きなマージンで改善することを示す。
- 参考スコア(独自算出の注目度): 26.679066364483752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a novel method to learn internal feature
representation models that are \textit{compatible} with previously learned
ones. Compatible features enable for direct comparison of old and new learned
features, allowing them to be used interchangeably over time. This eliminates
the need for visual search systems to extract new features for all previously
seen images in the gallery-set when sequentially upgrading the representation
model. Extracting new features is typically quite expensive or infeasible in
the case of very large gallery-sets and/or real time systems (i.e.,
face-recognition systems, social networks, life-long learning systems, robotics
and surveillance systems). Our approach, called Compatible Representations via
Stationarity (CoReS), achieves compatibility by encouraging stationarity to the
learned representation model without relying on previously learned models.
Stationarity allows features' statistical properties not to change under time
shift so that the current learned features are inter-operable with the old
ones. We evaluate single and sequential multi-model upgrading in growing
large-scale training datasets and we show that our method improves the
state-of-the-art in achieving compatible features by a large margin. In
particular, upgrading ten times with training data taken from CASIA-WebFace and
evaluating in Labeled Face in the Wild (LFW), we obtain a 49\% increase in
measuring the average number of times compatibility is achieved, which is a
544\% relative improvement over previous state-of-the-art.
- Abstract(参考訳): 本稿では,従来学習されていた特徴表現モデルに適合する内部特徴表現モデルを学習するための新しい手法を提案する。
互換性のある機能は、古い機能と新しい機能を直接比較することができ、時間とともに相互に使用することができる。
これにより、表現モデルを逐次アップグレードする際、ギャラリーセット内のすべての画像に対して、視覚検索システムが新機能を抽出する必要がなくなる。
新しい機能の抽出は、非常に大きなギャラリーセットやリアルタイムシステム(顔認識システム、ソーシャルネットワーク、生涯学習システム、ロボティクス、監視システムなど)の場合、通常非常に高価または不可能である。
本手法は,従来学習したモデルに頼らずに,学習表現モデルに定常性を付与することで,互換性を実現する。
stationarityは、時間のシフトによって特徴の統計特性が変化しないようにし、現在の学習された特徴が古い特徴と相互運用できるようにします。
大規模トレーニングデータセットの増大に伴う単一およびシーケンシャルなマルチモデルアップグレードを評価し,本手法が互換性のある機能を実現する上での最先端性の向上を大きなマージンで示す。
特にcasia-webfaceから取得したトレーニングデータを用いて10回アップグレードし,野生のラベル付き顔(lfw)で評価することで,従来よりも544.%の相対的改善である平均互換回数を49.%向上させることができた。
関連論文リスト
- Dual Consolidation for Pre-Trained Model-Based Domain-Incremental Learning [64.1745161657794]
ドメイン・インクリメンタル・ラーニング(ドメイン・インクリメンタル・ラーニング、ドメイン・インクリメンタル・ラーニング、ドメイン・インクリメンタル・ラーニング、ドメイン・インクリメンタル・ラーニング、Domain-Incremental Learning、DIL)は、異なるドメインにまたがる新しい概念へのモデルの漸進的な適応を含む。
プレトレーニングモデルの最近の進歩は、DILの確かな基盤を提供する。
しかし、新しい概念を学ぶことは、しばしば、事前訓練された知識を破滅的に忘れてしまう。
本稿では,歴史的知識の統一と統合を図るために,デュアルコンソリデータティオン(ドゥクト)を提案する。
論文 参考訳(メタデータ) (2024-10-01T17:58:06Z) - Backward-Compatible Aligned Representations via an Orthogonal Transformation Layer [20.96380700548786]
画像検索システムは、古い表現と新しい表現のミスアライメントにより、表現が改善されたモデルを更新する際の課題に直面している。
以前の研究では、バックフィルなしで新しい表現と古い表現を直接比較できる後方互換性のあるトレーニング方法が検討されてきた。
本稿では、後方互換性と独立に訓練されたモデルの性能のバランスをとることに取り組む。
論文 参考訳(メタデータ) (2024-08-16T15:05:28Z) - Stationary Representations: Optimally Approximating Compatibility and Implications for Improved Model Replacements [20.96380700548786]
互換性のある表現を学習することで、モデルが時間とともに更新されるときに、セマンティックな機能の交換可能な使用が可能になる。
これは、ギャラリーイメージの更新モデルによる再処理を避けることが重要となる検索・検索システムにおいて特に重要である。
我々は,$d$-Simplex固定分類器によって学習された定常表現が,形式的定義の2つの不等式制約に従って最適に近似していることを示す。
論文 参考訳(メタデータ) (2024-05-04T06:31:38Z) - Expandable Subspace Ensemble for Pre-Trained Model-Based Class-Incremental Learning [65.57123249246358]
PTMベースのCILのためのExpAndable Subspace Ensemble (EASE)を提案する。
タスク固有のサブスペースを作成することを目的として、新しいタスクごとに異なる軽量アダプタモジュールをトレーニングする。
我々のプロトタイプ補完戦略は、古いクラスのインスタンスを使わずに、古いクラスの新機能を合成します。
論文 参考訳(メタデータ) (2024-03-18T17:58:13Z) - Adaptive Cross Batch Normalization for Metric Learning [75.91093210956116]
メトリクス学習はコンピュータビジョンの基本的な問題である。
蓄積した埋め込みが最新であることを保証することは、同様に重要であることを示す。
特に、蓄積した埋め込みと現在のトレーニングイテレーションにおける特徴埋め込みとの間の表現的ドリフトを回避する必要がある。
論文 参考訳(メタデータ) (2023-03-30T03:22:52Z) - Towards Universal Backward-Compatible Representation Learning [29.77801805854168]
バックフィルフリーモデルアップグレードをサポートするために、後方互換性のある表現学習が導入されている。
まず、モデルアップグレードにおいて、可能なすべてのデータ分割を網羅する、普遍的な後方互換性のある表現学習の新たな問題を導入する。
提案手法は,Universal Backward- Training (UniBCT) とよばれる,シンプルで効果的な手法である。
論文 参考訳(メタデータ) (2022-03-03T09:23:51Z) - Subspace Regularizers for Few-Shot Class Incremental Learning [26.372024890126408]
既存のクラスの重みに代表される部分空間に近づき、新しいクラスに対する重みベクトルを奨励する、新しい部分空間正規化スキームの族を示す。
この結果から,クラス表現の幾何学的正則化は連続学習に有効なツールであることが示唆された。
論文 参考訳(メタデータ) (2021-10-13T22:19:53Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z) - Memory-Efficient Incremental Learning Through Feature Adaptation [71.1449769528535]
本稿では,以前学習したクラスから,画像の特徴記述子を保存するインクリメンタルラーニングのアプローチを提案する。
画像のより低次元の機能埋め込みを維持することで、メモリフットプリントが大幅に削減される。
実験の結果,インクリメンタルラーニングベンチマークにおいて,最先端の分類精度が得られた。
論文 参考訳(メタデータ) (2020-04-01T21:16:05Z) - Towards Backward-Compatible Representation Learning [86.39292571306395]
異なる次元であっても,従来の計算機能と互換性のある視覚的特徴を学習する方法を提案する。
これにより、埋め込みモデルを更新する際に、以前見たすべての画像の新機能の計算を回避できる。
本稿では、後方互換表現学習の第一歩として、後方互換学習(BCT)と呼ばれる埋め込みモデルを訓練するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-26T14:34:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。