Multimodal Generalized Zero Shot Learning for Gleason Grading using
Self-Supervised Learning
- URL: http://arxiv.org/abs/2111.07646v1
- Date: Mon, 15 Nov 2021 10:14:11 GMT
- Title: Multimodal Generalized Zero Shot Learning for Gleason Grading using
Self-Supervised Learning
- Authors: Dwarikanath Mahapatra
- Abstract summary: Gleason grading from histopathology images is essential for accurate prostate cancer diagnosis.
We propose a method to predict Gleason grades from magnetic resonance (MR) images which are non-interventional and easily acquired.
- Score: 4.898744396854313
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gleason grading from histopathology images is essential for accurate prostate
cancer (PCa) diagnosis. Since such images are obtained after invasive tissue
resection quick diagnosis is challenging under the existing paradigm. We
propose a method to predict Gleason grades from magnetic resonance (MR) images
which are non-interventional and easily acquired. We solve the problem in a
generalized zero-shot learning (GZSL) setting since we may not access training
images of every disease grade. Synthetic MRI feature vectors of unseen grades
(classes) are generated by exploiting Gleason grades' ordered nature through a
conditional variational autoencoder (CVAE) incorporating self-supervised
learning. Corresponding histopathology features are generated using cycle GANs,
and combined with MR features to predict Gleason grades of test images.
Experimental results show our method outperforms competing feature generating
approaches for GZSL, and comes close to performance of fully supervised
methods.
Related papers
- Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
Cross-modal augmentation of Magnetic Resonance Imaging (MRI) and microscopic imaging based on the same tissue samples is promising.
We tested a method for generating microscopic histological images from MRI scans of the corpus callosum using conditional generative adversarial network (cGAN) architecture.
arXiv Detail & Related papers (2023-10-16T13:58:53Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - GraVIS: Grouping Augmented Views from Independent Sources for
Dermatology Analysis [52.04899592688968]
We propose GraVIS, which is specifically optimized for learning self-supervised features from dermatology images.
GraVIS significantly outperforms its transfer learning and self-supervised learning counterparts in both lesion segmentation and disease classification tasks.
arXiv Detail & Related papers (2023-01-11T11:38:37Z) - Weakly-Supervised Deep Learning Model for Prostate Cancer Diagnosis and
Gleason Grading of Histopathology Images [2.547129771651519]
We propose a weakly-supervised algorithm to classify prostate cancer grades.
The proposed algorithm consists of three steps: extracting discriminative areas in a histopathology image, representing the image, and classifying the image into its Gleason grades.
Results show that the proposed model achieved state-of-the-art performance in the Gleason grading task in terms of accuracy, F1 score, and cohen-kappa.
arXiv Detail & Related papers (2022-12-25T03:07:52Z) - FREE: Feature Refinement for Generalized Zero-Shot Learning [86.41074134041394]
Generalized zero-shot learning (GZSL) has achieved significant progress, with many efforts dedicated to overcoming the problems of visual-semantic domain gap and seen-unseen bias.
Most existing methods directly use feature extraction models trained on ImageNet alone, ignoring the cross-dataset bias between ImageNet and GZSL benchmarks.
We propose a simple yet effective GZSL method, termed feature refinement for generalized zero-shot learning (FREE) to tackle the above problem.
arXiv Detail & Related papers (2021-07-29T08:11:01Z) - WeGleNet: A Weakly-Supervised Convolutional Neural Network for the
Semantic Segmentation of Gleason Grades in Prostate Histology Images [1.52819437883813]
We propose a deep-learning-based system able to detect local cancerous patterns in the prostate tissue using only the global-level Gleason score during training.
We obtained a Cohen's quadratic kappa (k) of 0.67 for the pixel-level prediction of cancerous patterns in the validation cohort.
We compared the model performance for semantic segmentation of Gleason grades with supervised state-of-the-art architectures in the test cohort.
arXiv Detail & Related papers (2021-05-21T16:27:16Z) - Self-learning for weakly supervised Gleason grading of local patterns [6.97280833203187]
We propose a weakly-supervised deep-learning model, based on self-learning CNNs, to accurately perform both, grading of patch-level patterns and biopsy-level scoring.
We empirically demonstrate that our approach outperforms its supervised counterpart on patch-level Gleason grading by a large margin.
arXiv Detail & Related papers (2021-05-21T15:39:50Z) - Automated Prostate Cancer Diagnosis Based on Gleason Grading Using
Convolutional Neural Network [12.161266795282915]
We propose a convolutional neural network (CNN)-based automatic classification method for accurate grading of prostate cancer (PCa) using whole slide histopathology images.
A data augmentation method named Patch-Based Image Reconstruction (PBIR) was proposed to reduce the high resolution and increase the diversity of WSIs.
A distribution correction module was developed to enhance the adaption of pretrained model to the target dataset.
arXiv Detail & Related papers (2020-11-29T06:42:08Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Gleason Grading of Histology Prostate Images through Semantic
Segmentation via Residual U-Net [60.145440290349796]
The final diagnosis of prostate cancer is based on the visual detection of Gleason patterns in prostate biopsy by pathologists.
Computer-aided-diagnosis systems allow to delineate and classify the cancerous patterns in the tissue.
The methodological core of this work is a U-Net convolutional neural network for image segmentation modified with residual blocks able to segment cancerous tissue.
arXiv Detail & Related papers (2020-05-22T19:49:10Z) - Gleason Score Prediction using Deep Learning in Tissue Microarray Image [15.959329921417618]
We used Gleason 2019 Challenge dataset to build a convolutional neural network (CNN) model to segment tissue microarray (TMA) images.
We used a pre-trained model of prostate segmentation to increase the accuracy of the Gleason grade segmentation.
The model achieved a mean Dice of 75.6% on the test cohort and ranked 4th in the Gleason 2019 Challenge with a score of 0.778 combined of Cohen's kappa and the f1-score.
arXiv Detail & Related papers (2020-05-11T07:00:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.